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Summary

Climate change is likely to provide significant challenges for the region’s agricultural industries and communities. Regional bodies and industries therefore need to know the location, nature and extent of potential risks and what, if any adaptation strategies are likely to be effective. This study used the most recent climate change projection data (for 2030, best estimate) for the region to develop climate change risk and vulnerability matrices using information gathered from published research and expert opinion. 
We found that the risks to the cropping (wheat and sorghum) and grazing industries to 2030 from anthropogenic climate change can largely be managed by primary producers (broad acre farmers and graziers) continuing to implement best management practice and managing the risks already posed by climate variability. This includes recognising that the existing climate variability of the region poses more immediate challenges to the ongoing viability and sustainability of primary industries than any anticipated changes to the regions climate to 2030. For example, extremes of climate such as prolonged drought, late frosts and consecutive hot days already pose significant risk to agricultural profitability and sustainability. 
A recent crop modelling study showed that a warmer and drier climate in 2030 may 1) have little effect on annual crop yield but there were differences between GCM’s and regions and 2) decrease the number of planting opportunities in dryland broad-acre cropping systems which may result in lower production over the longer term. 
We recommend that future work consider the likely impacts of climate change to at least 2050, that it includes assessments which consider physical conditions at the local scale (e.g. soil water holding capacity, soil fertility, local climate), and that it focuses on ensuring that primary producers have the capability and adaptation strategies needed to best manage existing and future climate risk.
Background
Agriculture (particularly cropping) is a significant land use across the Central Slopes.  Agricultural productivity is affected by climate change through higher temperatures; changes in the amount, intensity, seasonality and variability of rainfall; and changes in the frequency and/or intensity of extreme events such as droughts, bushfires and floods. 

Climate change poses significant challenges for the region’s agricultural industries. This project aims to articulate the specific risks to wheat, sorghum and mixed cropping using the Climate Risk Management Matrix approach. This approach was developed by Cobon et al. (2009) for the grazing industry and adapted by Deuter et al. (2014) for horticulture to capture existing information and knowledge to provide a basis for future discussions on managing climate risk with primary producers, policy makers and resource managers.
Industry and regional bodies need to know which areas within the Central Slopes are likely to be suitable for growing current, and potential new crops under the future climate projected for the region. This includes identifying the production changes and/or adaptation interventions that will have the greatest potential to improve on-farm profitability and sustainability.
This work is a first pass assessment to identify the sources of risk and adaptation strategies from the literature and expert opinion.  It was undertaken as a desktop review. Regional NRM bodies may use it to support landholder assumptions and build shared knowledge and agree to a way forward.  It may also identify critical gaps where further investments in research would be beneficial.  
With the Central Slopes covering cropping lands from Dalby to Dubbo and recognising changes in climate, soil characteristics and topography across that region, local information, knowledge and context should be considered where possible when developing any adaptation strategies.  
As a result of the potential climate changes there may be some areas where land uses other than cropping may need to be pursued.  Sequestration opportunities in these areas could be flagged for consideration.

Primary producers are already accustomed to dealing with a highly variable climate. However, new risk management and adaptation strategies will gain importance as the climate changes. This project will assist with the identification and evaluation of these strategies.
Aims

For climate change conditions in 2030,

1) Identify the key risks and adaptation strategies for cropping, particularly wheat, sorghum and mixed enterprises by completing a review of literature and assembling some opinions from experts.

2) Compile climate risk matrices for wheat, sorghum and grazing enterprises that are relevant to the region.
Current climate trends

The warming trend on the Central Slopes has resulted in a rise in temperature of 0.9 to 1.8oC since 1950 (Table 1). Overall, the Central Slopes has recorded a reduction in rainfall of approximately 15mm/decade with the greatest decline being in the eastern and southern region. This represents a drop in the average annual rainfall of 90mm when compared to 1950. The only exception was in one pocket west of Moree where the annual rainfall has increased slightly since 1950 (5mm/decade or 30mm overall).

Table 1: Historical Climate Trends (Interpreted and summarised from BOM 2011)
	Variable
	Trend Since (year)
	Change per decade

	
	
	Annual
	Summer
	Winter

	Maximum Temperature
(°C)
	1950
	+0.10  to +0.30 (north)
	0.0 to +0.20
	+0.15 to +0.40 (north)

	Minimum Temperature
(°C)
	1950
	+0.15 to +0.30
	+0.15 to +0.40
	+0.05 to +0.30

	Mean Temperature
(°C)
	1950
	+0.15 to +0.30
	+0.10 to +0.30
	+0.10 to +0.30

	Pan Evaporation 
(mm)
	1970
	-5 to NSC
	-2.5 to NSC
	-2.5

	Rainfall
(mm)
	1950
	+5 to -15 (east and south)
	+5 to -5 (east)
	+5 (south-west) to -10 (east)

	Number of Hot Days
	1970
	+2.5 days

	Warm Spell Duration
	1970
	+5 days

	NSC – No significant change | Unknown Growing Season Length | Pan Evaporation = the amount of water evaporated from an open pan per day | Hot Days = annual count of days with maximum temperature >35°C | Warm Spell Duration = Annual count of days with at least 4 consecutive days when daily maximum temperature >90th percentile | Unknown Growing Season Length = Annual (01 July to 30 June) count between first span of 6 or more days with daily mean temperature >15°C and first span of 6 or more days with daily mean temperature <15°C 


Climate in 2030

Uncertainty – climate projections and biological processes

The most recent comprehensive best estimate projections for Australia in 2030 indicate a rise in average temperature of 0.7–1.2oC, little change in annual rainfall in the far north and decreases of 2–5% elsewhere, and 2% increased potential evapotranspiration (CSIRO and Bureau of Meteorology 2007). There is uncertainty associated with these projections due to differences between models and uncertainty in the likely green house emissions in future years.

Gaps in our understanding of some biological process (e.g. relationship between CO2 level and vegetation growth) and problems associated with accurately representing complex systems in modelling limit our capacity to understand the ‘real impacts and most effective adaptive responses’ of climate change (McKeon et al. 2009).

Despite the lack of accurate future climate details and understanding of some biological processes, adaptation needs to occur now because past emissions of greenhouse gases have already committed Australia to further warming (Solomon et al. 2007) and these emissions are continuing to increase (Raupach et al. 2007). Risk assessment allows informed decisions to be made even where knowledge is limited.
Climate projections
The best estimate climate projections for 2030 on the Central Slopes under the high (RCP85) emissions scenario show an increase in temperature of 1.1oC, little or no change in rainfall (-2 to +2%) , a 3% rise in potential evaporation, little or no change in relative humidity and a 2% rise in wind speed (Table 2).

Table 2: Historical means for the period 1971-2000 (Eastern Downs) and climate projections for 2030 under the high (RCP85) emissions scenario relative to the model base period of 1986-2005
	Variable
	Annual
	Summer
	Autumn
	Winter
	Spring

	Temperature

(°C)
	Historical means
	18.3
	24.1
	18.9
	11.7
	18.8

	
	Projections for 2030
	+1.1
+0.7 to +1.5
	+1.0
+0.4 to +1.7
	+1.0
+0.5 to +1.5
	+1.0
+0.7 to +1.4
	+1.1
+0.6 to +1.9

	Rainfall
(mm)
	Historical means
	694
	262
	149
	99
	178

	
	Projections for 2030
	-1%

-13% to +8%
	+2%

-12% to +23%
	-2%

-17% to +14%
	-2%

-27% to +15%
	-1%

-23% to +12%

	Potential Evaporation*
(mm)
	Historical mean
	1737
	Historical means from 1971-2000 | Projections for 2030 (30-year period centred on 2030)

Best Estimate | Range of Change
For more information on the region, including projections for 2050 and 2070, please refer to ‘Climate change in the Eastern Downs Region’ (http://www.ehp.qld.gov.au/climatechange/pdf/regionsummary-easterndowns.pdf) 

	
	Projections for 2030
	+3%

+2% to +5%
	

	Relative Humidity
	Projections for 2030
	-0.8%

-2.8% to +1.6%
	

	Wind Speed*
	Projections for 2030
	+2%

0% to +5%
	


Additional climate projections 

· Global carbon dioxide concentration (CO2) is rapidly increasing. In 2011, carbon dioxide levels were at 390 ppm, well above the natural historical range from the last 80,000 years of 172 ppm to 300 ppm (CSIRO and BOM 2012). Carbon dioxide levels are projected to be 450 ppm by 2030, 600 ppm by 2050 and 975 ppm by 2070 (high emissions scenario) (IPCC 2011).

· Queensland can expect longer dry periods interrupted by more intense rainfall events.

· Drought is projected to be as much as 20-40% more frequent by 2030 over much of Australia (Mpelasoka et al. 2008).

Impacts and adaptation

Wheat and Sorghum
Climate change adaptation options for broad-acre mixed farms are relatively well documented. Options include diversification of crop varieties, species change, shifting planting windows, 'new' adaptive farming and tillage methods (no/low tillage, controlled traffic systems, row configurations, moisture conservation etc.) proactive pest and disease management and taking advantage of seasonal climate risk forecasts (Howden et al., 2006; Kingwell et al., 2013; Kokic et al., 2005). The majority of these options are what could be considered best management practice and encouraged at an industry level regardless of anthropogenic climate change scenarios.
The primary focus of any farm, industry or investment decision to respond to climate change should be to improve farm profitability (Kingwell et al., 2013). This will have a positive flow on effect in improving adaptive capacity. However, to date there appears little evidence in the literature that adaption options have been considered in terms of whole farm profit (John et al., Rodriguez et al., 2011). 

A modelling study of the Central Slopes using APSIM (Power 2014 - unpublished) showed projected climate change to 2030 to have little overall effect on either annual wheat or sorghum yield compared to historical levels. In general, the CO2 fertilisation effects negated the negative effects of less rainfall and higher temperatures. However, there were differences between models (5 CMIP5 models were tested), regions, soil water holding capacity and in-crop soil moisture levels. A key finding was that those cropping zones with soils of lower fertility and water holding capacity were likely to be the most vulnerable to future climate risk. Positive impacts were found with lower deep drainage, lower runoff, and lower soil loss. 
The significant detrimental finding was that over the longer-term there was less planting opportunities for dryland cropping systems. This had the flow-on effect of reducing overall production for both wheat and sorghum crops. The agronomic parameters to initiate crop planting for wheat and sorghum were that 1) rainfall over 7 days must be greater than 25mm and that 2) stored soil water must be greater than 100mm. The implication of this finding is that a risk and vulnerability assessment needs undertaking for each location modelled (19 locations were examined).
Grazing

The risk assessment reported here for 2030 (Appendix 7) showed a small positive impact on pasture growth, little change in pasture quality, a high risk of increase in animal pests and disease and low to medium risk of decreases in production and profitability. More droughts and increase in temperature (mainly in winter) leading to an increase in animal pests and disease were the major causes of down-side risk. 
Generally there is already capacity in the grazing industry of the region to adapt to the climate change impacts of 2030 (Appendix 8). In most cases the use of best management practices and judicious management of climate variability should overcome any detrimental impacts from climate change. However, producers have less capacity to adapt to the longer-term impacts that droughts produce and this is where they appear to be most vulnerable. Warmer winter temperatures will also provide the opportunity of pests from the north to over-winter and complete life-cycles in the south so awareness and monitoring, rapid responses and border surveillance will be important in stopping the spread of pests and disease.
Human Well-Being

The variable and changing climate of the region will have both direct and indirect impacts on health, location and living arrangements (TCI 2011, Hughes and McMichael 2011, NCCARF 2011a). Direct effects of extremes of weather include injury and death during floods, and heat stress during heatwaves. Indirect effects of extremes of weather include an increase in the: 

· number of bushfires due to extreme heat and aridity; 

· number of mosquito-borne, water-borne and food-borne diseases;

· number of infectious and contagious diseases with an increase in the number of injuries; and 

· incidence of disease from microbial food poisoning with an increase in temperature.
Increases in extreme events can lead to increased pressure on health systems, including an increased demand for health professionals, ambulance and hospital workers. Severe weather events can destroy places and disrupt livelihoods and communities leading to long-term mental health effects. According to Bonanno et al. 2010, a significant part of the community, as many as one in five, will suffer the debilitating effects of extreme stress, emotional injury and despair.  Evidence is beginning to emerge that drought and heatwaves lead to higher rates (by about 8%) of self-harm and suicide (Doherty and Clayton 2011).

Those most vulnerable to extremes of weather and climate include children, the elderly, Indigenous communities and people with pre-existing diseases and disabilities.
Communities and individuals are capable of adapting relatively well to climate change and extreme climate events through strategies including:

· Adapting existing buildings and planning any new infrastructure to take into account likely climate impacts and extreme events such as flooding;
· Implementing control measures to reduce the impact of bushfires, heatwaves, mosquitoes, water-borne and food-borne diseases, infectious and contagious diseases and injuries;
· Continuingto provide information on the expected effects of a changing climate;
· Developing workplace agreements on how to identify and manage when weather and climate events are affecting working conditions;
· Developing social and community support networks;
· Encouraging regional councils and government department to develop and provide information on social and health support programs.

Biodiversity

The Brigalow Belt (BB) and New England Tablelands (NET) bioregions are present within the Central Slopes region. The BB is very rich in species, including large numbers of plants and animals with small ranges. This bioregion has endemic and near-endemic eucalypt, wattle and invertebrate species. The outstanding feature of the NET is the Granite Belt, which is an elevated rocky plateau that has long served as a refuge for plants and animals. The NET is the coldest bioregion in Queensland and is the northern limit for large numbers of animals and plants with temperature distributions, including the Superb Lyrebird (Menura novaehollandiae), Common Wombat (Vombatus ursinus), Snow Gum (Eucalyptus panciflora) and the Juniper Grevillea (Grevillea juniperina). Several species are confined within Queensland in the Girraween National Park, including the Common Wombat, Bell’s Turtle, Alpine Water Skink, New England Tree Frog, New England Crayfish and various plants.
Potential impacts in the Brigalow Belt and New England Tableland include (Low 2011):

· Increased tree mortality of Brigalow and Cypress due to severe drought in the BB; ,
· Change in native pasture structure due to Buffel grass invasion (of particular concern within the BB),  displacing groundcover plants and significantly increasing fire risk;
· Increased fire intensity and size may threaten shrubs and smaller plants within the NET. For example, a geebung species, endangered in New South Wales, recently disappeared from its one known site in Girraween, Queensland, after a hot fire;
· Populations of mammals confined to the region, including the common wombat, Northern hairy nosed wombat and bridled nailtail wallaby may be threatened by rising temperatures and severe drought followed by intense fires.
Adaptation strategies for the impacts of extreme climate (drought, flood, heatwaves) on biodiversity include (Low 2011): 

· More pro-active fire management;
· Identification and control of  targeted weeds and invasive pasture grasses such as buffel grass and guinea grass;

· Control of pests and feral animals including goats, pigs and horses to reduce losses and protect rare plants; and
· Identification and protection of key refugia habitats.
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Appendix
Appendix 1. GCM simulated changes in a range of climate variables for the 2020 to 2039 (2030) and 2080 to 2099 (2090) periods relative to the 1986 to 2005 period. The table gives the 10th, 50th and 90th percentile change, as projected by the CMIP5 model archive (10th to 90th percentile range given within brackets). Results are given for the low (RCP2.6), intermediate (RCP4.5) and high (RCP8.5) emission scenarios on annual and seasonal resolution. The colouring indicate CMIP5 model agreement, as detailed in the legend given in Appendix 2 (CSIRO 2014 – unpublished data)

	Variable
	Season
	2030, RCP45
	2030, RCP85
	2090, RCP26
	2090, RCP45

	Temperature

Mean (°C)
	Annual
	1 (0.6 to 1.3)
	1.1 (0.7 to 1.5)
	1.1 (0.6 to 1.8)
	2.1 (1.4 to 2.7)

	
	DJF
	1 (0.5 to 1.5)
	1 (0.4 to 1.7)
	1.3 (0.5 to 2)
	2.2 (1.3 to 3.1)

	
	MAM
	0.9 (0.6 to 1.3)
	1 (0.5 to 1.5)
	1.1 (0.7 to 1.6)
	1.9 (1.4 to 2.7)

	
	JJA
	0.9 (0.5 to 1.2)
	1 (0.7 to 1.4)
	0.9 (0.6 to 1.5)
	1.9 (1.3 to 2.6)

	
	SON
	1 (0.5 to 1.4)
	1.1 (0.6 to 1.9)
	1 (0.4 to 2)
	2.2 (1.3 to 3.3)

	Temperature

Maximum (°C)
	Annual
	1.1 (0.6 to 1.4)
	1.2 (0.5 to 1.6)
	1.3 (0.6 to 1.9)
	2.2 (1.5 to 3)

	
	DJF
	0.9 (0.5 to 1.7)
	1.1 (0.4 to 1.8)
	1.5 (0.5 to 2.3)
	2.3 (1.5 to 3.2)

	
	MAM
	1 (0.5 to 1.4)
	1.1 (0.4 to 1.5)
	1.1 (0.6 to 1.9)
	2.1 (1.2 to 2.8)

	
	JJA
	1.1 (0.6 to 1.5)
	1.1 (0.6 to 1.7)
	1 (0.6 to 1.6)
	2.2 (1.2 to 3)

	
	SON
	1.1 (0.5 to 1.7)
	1.2 (0.5 to 2.1)
	1.2 (0.4 to 2.2)
	2.3 (1.3 to 3.7)

	Temperature

Minimum (°C)
	Annual
	1 (0.6 to 1.1)
	1 (0.7 to 1.4)
	1 (0.6 to 1.6)
	1.9 (1.3 to 2.7)

	
	DJF
	1 (0.7 to 1.4)
	1 (0.6 to 1.6)
	1.3 (0.4 to 1.8)
	2.2 (1.2 to 3.2)

	
	MAM
	0.9 (0.6 to 1.3)
	1 (0.5 to 1.5)
	0.9 (0.4 to 1.7)
	1.8 (1.2 to 2.7)

	
	JJA
	0.8 (0.3 to 1.1)
	0.9 (0.6 to 1.3)
	0.8 (0.4 to 1.4)
	1.7 (1.1 to 2.4)

	
	SON
	1 (0.6 to 1.3)
	1.1 (0.6 to 1.6)
	1.1 (0.4 to 1.7)
	2.1 (1.2 to 2.9)

	Precipitation

(%)
	Annual
	-2 (-11 to 7)
	-1 (-13 to 8)
	-3 (-18 to 8)
	-4 (-16 to 6)

	
	DJF
	1 (-9 to 16)
	2 (-12 to 23)
	-5 (-23 to 13)
	0 (-14 to 17)

	
	MAM
	-5 (-22 to 19)
	-2 (-17 to 14)
	-10 (-26 to 17)
	-4 (-28 to 23)

	
	JJA
	-3 (-20 to 11)
	-2 (-27 to 15)
	-4 (-24 to 11)
	-10 (-24 to 9)

	
	SON
	-2 (-18 to 12)
	-1 (-23 to 12)
	-1 (-25 to 12)
	-8 (-26 to 12)

	Solar radiation

(%)
	Annual
	0.5 (-0.7 to 1.8)
	0.6 (-0.7 to 2.1)
	1.7 (0.3 to 3.9)
	1.3 (-0.3 to 2.6)

	
	DJF
	0 (-1.6 to 2.4)
	0 (-2 to 2.1)
	2.7 (-0.3 to 4.4)
	0.8 (-1.8 to 3)

	
	MAM
	0.4 (-1.4 to 3.4)
	0.5 (-1.8 to 3.5)
	2.1 (-1.5 to 5.6)
	0.9 (-1.4 to 5.2)

	
	JJA
	1.2 (-0.5 to 4.1)
	1.4 (-0.8 to 4.6)
	1.7 (0.1 to 4.8)
	2.1 (-0.3 to 6.5)

	
	SON
	0.6 (-1.1 to 1.7)
	0.2 (-1.7 to 3)
	0.7 (-1.1 to 4.3)
	1.4 (-0.8 to 2.6)

	Relative humidity

(absolute, %)
	Annual
	-0.6 (-2.5 to 0.9)
	-0.8 (-2.8 to 1.6)
	-1.2 (-4.2 to 0.7)
	-1.6 (-4.1 to -0.3)

	
	DJF
	-0.4 (-2.7 to 1.7)
	-0.1 (-3 to 1.3)
	-1.3 (-6.8 to 0.9)
	-1.2 (-4.7 to 1.4)

	
	MAM
	-0.5 (-4.1 to 1.5)
	-0.6 (-2.8 to 1.8)
	-2 (-5.5 to 1.5)
	-1.9 (-6.3 to 0.9)

	
	JJA
	-0.7 (-2.9 to 0.7)
	-1 (-3.7 to 1.6)
	-1.3 (-3.3 to 1.1)
	-2 (-5.6 to 0.5)

	
	SON
	-0.6 (-4 to 1.5)
	-0.7 (-4.4 to 1.9)
	-0.3 (-5.8 to 1.9)
	-1.7 (-6.7 to 0.8)

	Evapo-transpiration

(%)
	Annual
	3.3 (1.6 to 4.8)
	3.6 (1.8 to 5.8)
	4.2 (2.3 to 6.9)
	6.8 (4.2 to 10.8)

	
	DJF
	2.8 (1.3 to 6.2)
	3.1 (1.2 to 6.6)
	5.3 (2 to 7.7)
	7.1 (4.3 to 11.5)

	
	MAM
	3.2 (1 to 7.2)
	4.7 (2.3 to 7.2)
	5.3 (2.3 to 7.7)
	7.8 (5 to 12.5)

	
	JJA
	3.7 (0.5 to 8)
	4.5 (1.1 to 7.4)
	4.3 (1.5 to 6.8)
	7.7 (4.4 to 13.5)

	
	SON
	3 (0.8 to 4.6)
	2.2 (0.5 to 4.9)
	2.5 (0.2 to 5.5)
	5.1 (1.5 to 9.4)

	Soil moisture (Budyko)

(%)
	Annual
	-1.3 (-7.6 to 1.2)
	-1.5 (-7.8 to 3.2)
	NA
	-3.2 (-11.2 to 0.5)

	
	DJF
	-0.6 (-5.5 to 4)
	-1.5 (-6.2 to 3.2)
	
	-3 (-8.9 to 0.6)

	
	MAM
	+0.1 (-10.7 to 3.7)
	-1.1 (-10.7 to 4.9)
	
	-2.6 (-11.9 to 1.5)

	
	JJA
	-1.8 (-8.5 to 3.7)
	-3.2 (-14.8 to 2.3)
	
	-2.3 (-13.3 to 2.5)

	
	SON
	-0.8 (-9.8 to 1.7)
	-1.6 (-10 to 3.7)
	
	-2 (-11.1 to 0.3)


Appendix 2. Colouring legend to Appendix 1, where high model agreement refer to about 8 out of 10 chance of being correct and medium agreement refer to about 5 out of 10 chance of being correct. ‘Substantial’ being a change outside the 10 to 90 percentile range of the model’s natural variability (CSIRO – unpublished data)
	
	High model agreement on substantial increase

	
	Medium model agreement on substantial increase

	
	High model agreement on increase

	
	Medium model agreement on increase

	
	High model agreement on little change

	
	Medium model agreement on little change

	
	High model agreement on substantial decrease

	
	Medium model agreement on substantial decrease

	
	High model agreement on decrease

	
	Medium model agreement on decrease


Appendix 3. Impacts and the level of impact risk associated with climate change for wheat grown in the Central Slopes – see attached xls
Appendix 4. Adaptation responses and vulnerability to climate change for wheat grown on the Central Slopes – see attached xls
Appendix 5. Impacts and the level of impact risk associated with climate change for sorghum grown in the Central Slopes – see attached xls
Appendix 6. Adaptation responses and vulnerability to climate change for sorghum grown on the Central Slopes – see attached xls
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