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EXECUTIVE SUMMARY

Bayesian Belief Networks (BBNs) are an excellent tool for assessing the impact of
climate change on groundwater dependent ecosystems. Due to its visual nature BBNs
present a tool for communicating the environmental issues and processes and also a
means of gathering additional information to feed into models or develop new models.
BBNs are based on Bayesian probability which states that for any two events, A and B,
the probability of event B occurring given that event A has happen (p(B|A) can be
determined using the formula

p(BlA) = p(A|B) x p(B)/p(A)

where p(A|B) is the probability of event A occurring given B, p(B) is the probability of
event B and p(4) is the probability of event A. A BBN is composed of nodes (or
variables) which have causal links where changes in the state of one node may
influence other nodes linked to it. The nature of these changes are defined by
conditional probability tables which give the probability of an outcome given the change
in the influencing nodes.

BBNs have a number of advantages (Jakeman, 2009)-
e Easily updated with new submodels and new information
e Spatial and landscape components can be included as separate nodes
e FEasily used as a tool for communicating complex environmental problems
among experts, managers and stakeholders
¢ Can integrate models of different types
e Can be used as a decision making tool
e Transparent.

Bayesian belief networks (BBNs) were developed to model the potential impacts of
climate change on groundwater dependent ecosystems. Three systems were chosen
as case studies (Gnangara Mound, Blackwood River and Margaret River Caves).
Each system had varying degrees of data available, ranging from a data rich case
study (Gnangara Mound (invertebrates and vegetation) through to a data poor case
study (Margaret River Caves).

The development and testing of the BBNs followed the process of-

(1) Developing a conceptual model for each of the systems: In this stage the
identification of important system variables and links between variables were
established. In this case this was done at a workshop with experts defining
variable and causal links.

(2) Parameterisation of the models with data: In this stage states and probabilities
for each variable were assigned, with each variable being discreet. As the three
systems varied in the quality and quantity of data available, ranging from a
completely data driven approach for the data rich Gnangara Mound wetlands
(invertebrates and vegetation) through to an expert opinion approach for the
Margaret River Caves and Gnangara Mound frogs. For all case studies
Netica™ v4 (www.norsys.com) was used for the construction of the BBNs (there
is a range of BBN software, such as Genie™ (www.genie.sis.pitt.edu) and
Hugin™ (www.hugin.com), any of these could have been used).

(3) Evaluation of the models: Evaluation of models was undertaken in two forms,
expert opinion and sensitivity analysis. Qualitative feedback was obtained
through stakeholders and experts in workshops where the models were
demonstrated. Sensitivity analysis identifies how sensitive a conclusion is to the
evidence provided. Sensitivity analyses were conducted at different

Development of Bayesian Belief Networks 1



groundwater levels (node set to 100% for a particular groundwater level) to
determine major driving nodes.

(4) Analysis of the impacts of various climate change scenarios on the systems
using the BBN: Analysis of the impacts of various climate change scenarios
was conducted using GIS for the Gnangara Mound and Blackwood River study
sites, where groundwater level projections under different climate change
scenarios were modelled using the BBNs (see SD7 Neville 2013).

In the case of the Gnangara Mound wetland invertebrates and wetlands, which had an
extensive data set, BBNs were constructed using only available data. In the case of the
Blackwood River where data was less extensive a combination of data and expert
opinion was utilised. In the case of the amphibians and Margaret River caves case
studies, where there was not appropriate data, expert opinion was utilised. In all cases
BBNs could be constructed and the networks were able to model the impacts on the
systems examined due to changing groundwater levels.

The case studies demonstrate the use of BBN’s in modelling the impact of altered
groundwater levels, due to climate change, on groundwater dependent ecosystems.
The case studies used a variety of information from extensive datasets (Gnangara
mound invertebrates and vegetation) through to expert opinion (Gnangara mound frogs
and Margaret River caves). The models provided a visual representation of the
systems examined and allowed the manipulation of starting conditions for the models
for the testing of different scenarios.
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1. INTRODUCTION

A Bayesian Belief Network (BBN) is a graphical model which can be used to establish
the causal relationships between key factors and final outcomes (Hart, 2006). BBN'’s
can provide effective decision support tools for problems involving uncertainty and
probabilistic reasoning (Cain, 2001). The networks are models that represent the
correlative and causal relationships between variables graphically and probabilistically
(Cain, 2001). BBNs can model a situation where causality plays a role but our
understanding of what is going on is incomplete.

Bayesian Belief Networks are composed of a series of nodes, which represent a
variable in the model. Each node has a number of states with an associated probability
distribution. Where there is a casual link between nodes the nodes are linked, the
relationship between the nodes is defined by a conditional probability table (Mo, 2010).
The conditional probability table represents likelihoods based on prior information or
past experience (Anon, 2008). The outcome of the BBN is a probability for the
hypothesis, given the data or other evidence (Mo, 2010). For example, in Figure 1 an
example of a simple network structure can be seen where nodes A and B represent
causal factors influencing the probability of C (Figure 1a). The values of the nodes are
defined in terms of states (Figure 1b). A conditional probability table (Figure 1c) defines
the causal relationship between A,B and C. This results in the probability of the three
outcomes of C (high, medium, low) occurring.

Bayesian Belief Networks are based on Bayesian probability theory. Bayes rule states
that for any two events, A and B, the probability of event B occurring given that event A
has happen (p(B|A)) can be determined using the formula

p(B|A) = p(A|B) x p(B)/p(A)

where p(A|B) is the probability of event A occurring given B, p(B) is the probability of
event B and p(4) is the probability of event A (Jenson, 2007).

Development of Bayesian Belief Networks 3
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Low False 0.000 0.000 100. 00

Figure 1: Example of a simple Bayesian Network structure (from (Kragt, 2009)).

Bayesian probability theory allows the modelling of uncertainty and outcomes by
combining expert knowledge and observational evidence. The probability can be based
on expert knowledge or data. When there is very little data the model will rely heavily
on expert knowledge, where there is more data the model relies less on expert
knowledge. One of the important features of BBNs is that the probabilities do not need
to be exact to be useful. BBN’s are generally robust to imperfect knowledge and
approximate probabilities (even educated guesses) very often give very good results.

BBNs have a number of advantages (Jakeman, 2009)-

Easily updated with new submodels and new information

Spatial and landscape components can be included as separate nodes

Easily used as a tool for communicating complex environmental problems
among experts, managers and stakeholders

Can integrate models of different types

Can be used as a decision making tool

Transparent.
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Disadvantages include (Jakeman, 2009)-

Cannot be used as dynamic models (e.g. time step models)

Cannot use feedback loops

Variables must be discreet

Not optimal for statistical inference

Sometimes difficulty can be experienced in obtaining agreement on network
structure.

Bayesian Belief networks have been used in a variety of fields including medicine,
engineering, finance and ecology. BBN’s have been used in a number of ecological
and natural resource management contexts (Aguilera, 2011). An example of the use of
Bayesian networks in natural resource management can be seen in Chan et al. (2012)
where BBNs were used to assist decision-making on the environmental flow
requirements for the Daly River in the Northern Territory. In this case BBNs were used
to determine the impacts of altered flows on the abundance of two fish species. Due to
the lack of data the majority of the relationships between flow and fish abundance were
defined by expert opinion, with data being used where available. When the model was
validated with field data prediction errors were between 20 and 30%. The models
indicated that an increase in water extraction would deleteriously impact on the fish
populations.

Marcot et al. (2001) used BBNs to evaluate fish and wildlife population viability under a
number of land management alternatives. The BBN modelled the ecological causal
web of a number of key environmental variables that influenced habitat capability,
potential population response for each species and the influence of habitat planning
alternatives. The probabilities within the model were obtained through a mixture of
empirical data and expert opinion. The modelling allowed identification of planning
decisions and key environmental variables that most impacted on species viability and
therefore helped to prioritise management activities.

For the modelling of the impacts of climate change on groundwater dependent
ecosystems BBN'’s were considered an appropriate tool as

¢ Knowledge of the interactions involved in groundwater dependent ecosystems
is incomplete therefore some of the processes have to be modelled using
expert opinion on top of the available data, BBNs are very robust to the use of
imperfect knowledge

e Much of the data on groundwater dependent ecosystems had spatial
components, BBNs are composed of nodes which can incorporate separate
spatial components

e This project aims to develop a framework for use in assessing the impact of
climate change on groundwater dependent ecosystems. Due to its visual nature
BBNs present an excellent tool not only for communicating the environmental
issues and processes but also a means of gathering additional information to
feed into models or develop new models

e BBNs are composed of nodes which allow the manipulation of starting
conditions for the model, they therefore present a useful management tool to
test different scenarios.

Development of Bayesian Belief Networks 5



2. METHODS

2.1 Definition of model objectives systems and scales

Bayesian belief networks (BBNs) were developed to model the potential impacts of
climate change on groundwater dependent ecosystems. Three systems were chosen
as case studies (Gnangara Mound, Blackwood River and Margaret River Caves).
Each system had varying degrees of data available, ranging from a data rich case
study (Gnangara Mound (invertebrates and vegetation) through to a data poor case
study (Margaret River Caves). The Blackwood River system had data available for the
species present but not necessarily available from the system. The development and
testing of the BBNs followed the process of (1) developing a conceptual model for each
of the systems, (2) parameterisation of the models with data, (3) evaluation of the
models and (4) analysis of the impacts various climate change scenarios on the
systems using the BBN. Points 1-3 are the subject of this section, analysis of impacts
of climate change scenarios can be found in SD7 Neville 2013.

2.2 Development of a conceptual model for each of the systems

There are two important steps in the initial construction of the conceptual model of a
Bayesian Belief Network (BBN). Firstly, the identification of important system variables
and secondly, establishing links between variables (Kragt, 2009). The initial conceptual
models were developed for all three systems being examined (Gnangara mound,
Blackwood River and Margaret River Caves) at a workshop attended by experts on the
three systems. The workshop involved experts identifying the key components of the
ecosystem relating to groundwater level change. Participants in the workshops were
asked to identify possible variables, relating to either climate change and/or
groundwater levels which would impact on the biota of each system. A facilitator
constructed the conceptual model during the workshop under direction of the experts
present. The conceptual models were simple representations of the systems where
links between relevant variables were made, with the direction of the impact noted.
These conceptual models were used as the first step in the development of the BBNs.

2.3 Parameterisation of the models with data

To parameterise the model, states and probabilities for each variable needed to be
assigned, with each variable being discreet. The conditional probability tables then
needed to be populated. As the three systems varied in the quality and quantity of data
available, ranging from a completely data driven approach for the data rich Gnangara
Mound wetlands (invertebrates and vegetation) through to an expert opinion approach
for the Margaret River Caves and Gnangara Mound frogs. The process for each of the
cases are outlined below. For all case studies Netica™ v4 (www.norsys.com) was used
for the construction of the BBNs (there is a range of BBN software, such as Genie™
(www.genie.sis.pitt.edu) and Hugin™ (www.hugin.com), any of these could have been
used).

2.3.1 Gnangara Mound

The Gnangara mound study area had a large data set covering a number of years for
the response of macroinvertebrates and vegetation to changing groundwater levels.
This dataset was used to create two BBNs (one for macroinvertebrates and one for
vegetation) based solely on data. Development of these models is detailed in SD2
Sommer et al. 2013.

To develop an overall risk of wetland health based on both macroinvertebrates and
vegetation the two models were joined, with their final outputs being used to populate a
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wetland health index conditional probability table. The two outputs were combined into
a wetland health conditional probability table where if both inputs were 100% low risk
then wetland health was rated 100% low risk, if both inputs were 100% high risk then
wetland health was rated high risk (Table 1). Risk between the two extremes was
determined by expert opinion.

Table 1: Conditional probability table for overall wetland health using risk to
wetland vegetation and wetland macroinvertebrates. Showing the percentage
probability of low, medium and high risk to wetland health.

Vegetation Marcoinvertebrate | Low Moderate High
risk risk

Low Low 100 0 0
Low Moderate 50 50 0
Low High 25 75 0
Low Very high 0 100 0
Moderate Low 50 50 0
Moderate Moderate 0 100 0
Moderate High 0 75 25
Moderate Very high 0 50 50
High Low 25 75 0
High Moderate 0 75 25
High High 0 25 75
High Very high 0 10 90
Very high Low 0 100 0
Very high Moderate 0 50 50
Very high High 0 10 90
Very high Very high 0 0 100

In addition to the risk to wetland vegetation and macro invertebrates models, BBNs
were constructed for the frog species present in the wetlands. Initially an attempt was
made to construct a BBN in a similar method to the methods used for the vegetation
and macroinvertebrates (see SD2 Sommer et al. 2013 and SD3 Mitchell, Sommer and
Speldewinde 2013). Due to the lack of appropriate data this was not possible, therefore
networks were developed for the amphibians using expert opinion. The use of expert
opinion in ecological decision making has been gaining use in recent years (Kuhnert,
2010). Martin et al. (2011) suggests five steps for the elicitation of expert knowledge:
1. Deciding on how the information will be used,

Development of Bayesian Belief Networks 7



Determining what to elicit,

Designing the elicitation process,

Performing the elicitation, and

Translating the elicited information into quantitative statements which can be
used in a model.

aogRrwd

In the case of amphibians as part of the Gnangara mound groundwater dependent
ecosystem the information was to be used to construct a BBN for modeling the impact
of changes in groundwater levels on amphibians. Prior to consulting an expert panel,
the species of interest were divided into three reproductive guilds by an expert on
amphibians of the area (aquatic-breeding species (Crinia glauerti, C. georgiana, C.
insignifera, Limnodynastes dorsalsis, Litoria adelaidensis, Litoria moorei), species with
terrestrial embryos and aquatic larva (Heleiporus eyrei and Pseudophryne guentheri),
and an entirely terrestrial species that breeds underground (Myobatrachus gouldii) (see
SD3 Mitchell, Sommer and Speldewinde 2013). For each of the guilds a conceptual
model was derived indicating the major variables relating to the survival of these
species. A workshop was then convened with four experts on Gnangara Mound frogs.
Experts were first asked if they agreed with the conceptual models and given the
opportunity to modify the models. Once agreement on model structure was reached,
expert opinion was then used to populate the conditional probability tables of the BBN.
This process consisted of showing the group the model and then working through each
node in the model and allowing experts to discuss their opinions on the probability of
outcomes before reaching a consensus. This method was chosen given that the expert
panel was small (four people) and the models were not overly complex (five nodes in
the case of the Turtle Frog model). Once conditional probability tables for each node
were completed, experts were given the opportunity to alter the tables if required and
simple scenarios were run through the model to check if model outcomes matched with
the expected outcome predicted by the expert panel.

The amphibian BBN’s we not included in the wetland health model so that it could
remain an example of a completely data driven BBN.

2.3.2 Blackwood River

The Blackwood study site was not as data rich as the Gnangara Mound study site,
therefore a mixture of data and expert opinion was utilized to develop the BBN for fish
in the Blackwood River. The relationship between groundwater levels (GWL) and
surface water levels (SWL)(summer groundwater dependent flows) was derived using
data from Department of Water gauging station on the Blackwood River (DOW gauge
609041). Using gauging station data and SWAMS groundwater levels the relationship
was determined using regression (note only summer flows were used in the
regression) (SWL=-4.4+(0.5x GWL)).

The relationship between surface water levels and water quality was derived using
water quality and surface water level data from DOW gauging station 609041 (

Table 2). For each of the four water quality variables (temperature, salinity, dissolved
oxygen and pH) the relationship was only determined for the summer months when
groundwater inflow was the main contribution to surface water levels. For salinity and
dissolved oxygen there was not a significant relationship to surface water levels
although there was a general trend. The general trend for these two variables were
used to determine salinity and dissolved oxygen values in the model.

8 Development of Bayesian Belief Networks



Table 2: Relationships between variables used in the Blackwood River BBN and
surface water level.

Variable Relationship to surface water level(SWL)
Temperature Temp=237.9-(21.2x SWL)

Dissolved oxygen (mg/L) DO=-263.7+(32.4x SWL)

pH pH=-13.0+(1.9x SWL)

Salinity (conductivity) Sal=-58657.3+(5902.8x SWL)

The thresholds for the environmental variables were based on data (see SD4 Beatty et
al. 2013) but were derived by expert opinion. Three possible outcomes were defined for
the threshold, population ‘persist’, population ‘likely decline’ and population ‘extreme
decline’. For an outcome to fall into the population ‘extreme decline‘ outcome one or
more of the environmental thresholds had to fall outside of the known range for that
species (the exceptions being if the salinity and dissolved oxygen, it was considered
that salinity levels below recorded values or DO levels above recorded levels were still
within the species thresholds). Population ‘likely decline’ was defined as three or more
of the environmental variables being recorded in the 0-25 percentile or 75-100
percentile. If all of the variables fell in the 25-75 percentile the outcome was defined as
population persist (the exceptions being salinity and DO, it was considered that salinity
below the 25" percentile or DO levels above the 75" percentile were within the species
thresholds).

To develop an overall index of fish health in the Blackwood study area, two indicator
species were chosen to contribute to the index (Nannatherina balstoni and Galaxias
occidentallis). N.balstoni only occurs over a narrow range of environmental conditions
while G.occidentalis occurs over a wide range of environmental conditions (SD4 Beatty
et al. 2013). A measure of fish community health node was therefore constructed in the
model based on the characteristics of these two species (the thresholds of the
remaining species lie between the two extremes of N.balstoni and G.occidentalis). If
both species were found to persist in the the system was defined as 100% healthy, if
both species were classified as ‘severe decline’ then the system was defined as 100%
unhealthy. Various combinations in-between these two extremes were given
probabilities by the expert panel (

Table 3).
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Table 3: Conditional probability table for fish health in the Blackwood River
based on outcomes from N.bastoni and G.occidentalis. Showing the percentage
probability of low, medium and high risk to fish health.

N.balstoni G.occidentalis Good Intermediate Poor
Severe decline | Severe decline 0 0 100
Severe decline | Likely decline 0 25 75
Severe decline | Persist 0 50 50
Likely decline | Severe decline 0 25 75
Likely decline | Likely decline 0 50 50
Likely decline | Persist 25 50 25
Persist Severe decline 0 25 75
Persist Likely decline 0 50 50
Persist Persist 100 0 0

2.3.3 Margaret River Caves

Very little data on the behaviour of these systems was available therefore the BBN was
constructed purely on expert opinion. The basic outline of how networks are formed
using expert opinion is described above for amphibians. In the case of the Margaret
River Caves, two experts on the systems (Stefan Eberhard and Stacey Chilcott)
working from the initial conceptual model derived a basic network structure based
solely on groundwater level inputs and populated the conditional probability tables for
each node based on their experience with the caves.

2.4 Evaluation of models

Evaluation of models was undertaken in two forms, expert opinion and sensitivity
analysis. Qualitative feedback was obtained through stakeholders and experts in
workshops where the models were demonstrated. Experts and stakeholder were asked
to confirm if the model structure reflected their perception of how the system functioned
and if the outputs derived from the models were what would be expected.

Sensitivity analysis was performed on each model. Sensitivity analysis identifies how
sensitive a conclusion is to the evidence provided (Jenson, 2007). Sensitivity analysis
also allows the identification of key nodes in the model, which play a significant role in
the outcome of the model. The higher the value for a node the more that node
influences the target, in this case outcome, node. Sensitivity analyses were conducted
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at different groundwater levels (node set to 100% for a particular groundwater level) to
determine major driving nodes.

2.5 Analysis of impacts of various climate change scenarios on
systems using the BBNs

Analysis of the impacts of various climate change scenarios was conducted using GIS

for the Gnangara Mound and Blackwood River study sites, where groundwater level

projections under different climate change scenarios were modelled using the BBNs
(see SD7 Neville 2013).
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3. RESULTS

3.1 Gnangara Mound

A conceptual model was derived during a workshop with a panel of experts (Figure 2).
The initial conceptual model highlighted the importance of water quality, soil moisture,
vegetation and soil type on this groundwater dependent ecosystem. With the exception
of soil type, all these variables were dependent on the amount of water in the system.
This conceptual model was refined to a number of separate BBNs (macroinvertebrates
(see SD2 Sommer et al. 2013), vegetation (see SD2 Sommer et al. 2013), an overall
wetland health model (Figure 1, Table 4 and Table 5). Results for the
macroinvertebrate and vegetation models are discussed in SD2 Sommer et al. 2013.

Evapotranspiration Rainfall (winter)

Groundwater €———> Surface water €<—— Surface input

Water quality Soil moisture Vegetation €— Soil type

Biota

Figure 2: Conceptual model of the Gnangara Mound groundwater dependent
ecosystem.

For the macroinvertebrates, the greatest contributing variable to risk to water quality
and macroinvertebrate risk was changes in water chemistry (Table 6). Most nodes had
slightly altered entropy reduction with changing groundwater depth, indicating that as
groundwater levels the relative importance of these nodes changed. Depending on the
lithology, changes in the number of dry days per year and groundwater depth impacted
on both pH and NH4 (Table 6 and see also SD2 Sommer et al. 2013). For the
vegetation model, a similar effect was observed with the entropy reduction altering
slightly for most variables (Table 7). The slight changes in entropy reduction with
changes in groundwater level for both models would seem to indicate that the response
of each node is similar at the differing groundwater levels i.e. groundwater changes
impact on the outcome of the model but each node does not change the way it
responds when groundwater level changes.

12 Development of Bayesian Belief Networks
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Table 4: Description of nodes in invertebrate BBN.

Node Description Possible Node States

Lithology Lithology Spearwood
Bassendean

No of dry days/year The number of dry 3 intervals taken from

days/year

MRT threshold analyses

Groundwater depth (m)

Groundwater depth (m)

3 intervals taken from
MRT threshold analyses

Hydro_change

Filter node for No of dry
days and Groundwater

Acceptable
Unacceptable

depth

Substrate Substrate Organic Floc
Datomaceous
Organic Peat
Marl

pH pH 4 intervals taken from
MRT threshold analyses

NH4 Ammonium concentration 3 intervals taken from

in yg/L

MRT threshold analyses

Water quality change Filter node for lithology, pH | Acceptable
and NH4 Unacceptable
Water quality risk Water quality risk Low
Moderate
High
Very high

Taxonomic group

Dominant
macroinvertebrate
taxonomic group

6 possible states

FFG

Dominant
macroinvertebrate
functional feeding group

10 possible states

Acid tolerance Macroinvertebrate Sensitive
tolerance to acidity Sens strong
Tolerant
Toler strong
Drought resistance Macroinvertebrate drought | Aestivate
resistance Aest act
Aest pass
Active
Nonres act
Change Filter node for Taxonomic | Acceptable
Group and FFG Unacceptable
Change_2 Filter node for Acid Acceptable
tolerance and lithology Unacceptable
Macroinv risk Risk that Low
macroinvertebrate Moderate
functional character will High
change Very high
Overall Wetland Risk Risk that ecological Low
character of the wetland Moderate
will change High
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Table 5: Description of nodes in the vegetation BBN and their output states.

Node Description Possible Node States
Start. GWD Groundwater depth at 4 possible ranges taken
commencement of from MRT threshold
monitoring analyses
GW_decl Magnitude of groundwater | 4 possible ranges taken
decline in meters from MRT threshold
analyses
Rate_decl Rate of groundwater 3 possible ranges taken
decline in meters/year from MRT threshold
analyses
Prop_hydro Change in the proportion 4 intervals
of hydrophytes
Prop_meso Change in the proportion 4 intervals
of mesophytes
Prop_xero Change in the proportion 4 intervals
of xerophytes
Prop_gen Change in the proportion 4 intervals
of generalists
Perc_hydro Percentage change in 4 intervals
hydrophyte abundance
Perc_meso Percentage change in 4 intervals
mesophyte abundance
Perc_xero Percentage change in 4 intervals
xerophyte abundance
Perc_gen Percentage change in 4 intervals

generalists abundance

Adverse change in
proportion

Adverse change in the
proportion of hydrotypes
(filter node)

Unacc_change
Accept_change

Adverse change in
abundance

Adverse change in the
percentage change of
hydrotypes (filter node)

Unacc_change
Accept_change

Risk of change to
vegetation state

Risk of change to
vegetation state

Unacceptable
Acceptable

Development of Bayesian Belief Networks

15



Table 6: Sensitivity analysis showing percentage entropy reduction for overall

wetland risk (macroinvertebate model) at different groundwater levels.

Influencing node

<Ir 1 1
- = =
= om o
g, g3 o
(V] - O - O
o 2. 2=
8 S S S8
= o = Lo = To)
T = T N © o
2 £o S
3 °° o
o o o
Water quality risk 34.8% 32.3% 32.2%
Macro invertebrate risk 23.0% 22.4% 22.0%
Chem_change 25.8% 19.9% 19.7%
Change 2 10.4% 9.8% 9.5%
Change 5.5% 5.4% 5.3%
pH 5.8% 5.7% 4.7%
Hydro_change 4.5% 5.9% 2.8%
Acid_Tol 4.6% 3.8% 3.3%
NH4 3.8% 3.5% 2.7%
Dry_days 4.5% 3.8% 0.5%
Lithology 2.0% 1.4% 1.9%
Substrate 1.9% 1.2% 1.7%
FFG 1.6% 1.0% 0.8%
Taxa_group 1.0% 0.9% 0.6%
Drought_res 0.9% 0.7% 0.2%
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Table 7: Sensitivity analysis showing percentage entropy reduction for overall
risk of change to ecological character (vegetation) at different levels of
groundwater decline.

Influencing node
Lo
< —

™ o o

o o + o

e ™ 2 [

o o o —

O O O O

(0] (] (&) (&)

N ° ° °

= = = =

O] O O O
Proportion change 21.0% 20.3% 21% 20.5%
Abundance change 23.5% 19.9% 20.6% 20.6%
Start GWD 0.1% 1.2% 0.7% 0.2%
Rate decl 1.5% 0.5% 1.8% 0.8%
Perc_xero 2.1% 2.0% 2.0% 1.3%
Perc_hydro 8.8% 8.8% 9.4% 8.0%
Prop _hydro 7.7% 6.7% 7.9% 7.6%
Perc_meso 0.5% 0.3% 0.4% 0.2%
Prop _meso 0.2% 0.3% 0.1% 0.1%
Perc_gen 2.1% 1.6% 2.6% 2.6%
Prop_gen 2.6% 2.3% 2.6% 2.3%
Prop_xero 1.6% 2.0% 1.1% 1.8%

Three BBNs were developed for the Gnangara mound frogs, one for each reproduction
guild (

Figure 4, Table 8, Figure 5, Table 10, Figure 6 and

Table 13). Sensitivity analysis of the Turtle frog BBN (

Figure 4 and Table 9) shows no entropy reduction when the groundwater depth is zero
and below 4m. At these depths the soil moisture is 100% unsuitable for the Turtle Frog
and therefore the rainfall trigger nodes become irrelevant in the model. In between
these two extremes soil moisture was still a highly relevant influence on the output
node.

Sensitivity analysis of the BBN for aquatic breeding frogs (Figure 5 and Table 10)
showed a similar pattern for all species where entropy reduction for each node was
unchanged with changes in groundwater level. The only influence of the changes in
groundwater level are through the salinity node. Within the groundwater levels
modelled the salinity levels do not exceed the salinity threshold and therefore do not
influence any of the output nodes.

With the terrestrial-aquatic frog BBN a similar situation was found with the sensitivity
analysis (Figure 6 and Table 14). For the terrestrial aquatic frogs the salinity threshold
was never exceeded in the model with the groundwater levels tested therefore altering
the groundwater level did not alter the sensitivity analysis.

Development of Bayesian Belief Networks 17



Ground_water_level

greaterthan 0
zero to neg1
neg1toneg2
neg2 to neg3
neg3to neg4
less than neg4

16.7
16.7
16.7
16.7
16.7
16.7

\

Spring_rainfall_trigger

Autumn_rainfall_trigger

spring decline

spring present  50.0 j—
50.0

autumn decline

autumn present  50.0 jm—
50.0

7
//
Soil_moisture /
Tow 53.3 e
medium  16.7 S
high 25.0 7
7
/
7
7
s
/
/
F ¥
Turtle_frog
Extreme decline 785
Slight decline 8.54
Persist 129

Figure 4: BBN for the Turtle Frog.

Table 8: Description of nodes in the Turtle frog BBN.

Node

Description

Possible node states

Ground_water_level

Height of water table
relative to surface

6 groundwater levels

Soil moisture

Amount of moisture in soil

Low/medium/high

Spring_rainfall_trigger

Rainfall in spring to trigger
courship

Present/decline

Autumn_rainfall_trigger

Rainfall in autumn to
trigger emergence of
metamorphs

Present/decline

Table 9: Sensitivity analysis for the Turtle Frog BBN showing percentage entropy
reduction at differing groundwater levels (assuming 50% chance of spring and

autumn rainfall triggers).

Node Greater than | -1mto -2m Less than -4m
Om

Soil moisture 32.8%

Max_depth

Autumn_rainfall_trigger 0.2%

Spring_rainfall_trigger 0.1%

18 Development of Bayesian Belief Networks
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Table 10: Description of nodes in BBN for aquatic breeding frogs.

Node

Description

Possible node states

Salinity

Salinity of water with 8ppt
being the threshold for
survival

Less than 8ppt
Greater than 8ppt

Tadpole survival 1

Salinity and hydroperiod
suitable for survival of
tadpoles requiring surface
water for one month

Yes/no

Tadpole survival 2

Salinity and hydroperiod
suitable for survival of
tadpoles requiring surface
water for two months

Yes/no

Tadpole survival 3

Salinity and hydroperiod
suitable for survival of
tadpoles requiring surface
water for three months

Yes/no

Tadpole_survival_4

Salinity and hydroperiod
suitable for survival of
tadpoles requiring surface
water for four months

Yes/no

Winter_breeding_trig

Sufficient winter rainfall to
trigger breeding

Present/decline

Ground water level

Depth of groundwater relative
to the surface

Six groundwater levels

Hydroperiod Time surface water available | Five time periods
Type of lithology Spearwood or
Lithology Bassendean

Table 11: Sensitivity analysis for BBN for aquatic breeding frogs (assuming
correct hydroperiod for the species, 50% chance of winter breeding trigger
present and lithology 50%) at three groundwater levels.

Influencing Node Quacking frog Squelching froglet Rattling froglet

S S £

S e |5 12 le |§ |2 | |

8 N c 8 o c 8 o c

I Q 2 ol Q 2 ol <! 2

o - (] - Q -

¢} - ¢} - <} —
Salinity 22.1%1(22.1%(22.1%|15.6% [ 15.6% | 15.6% | 100%| 100% | 100%
Tadpole_survival 1 [22.1%22.1%[22.1%|15.6% | 15.6%|15.6% | 100%| 100% | 100%
Tadpole _survival 2 0.2%| 0.2%| 0.2% |58.9%|58.9% [58.9% | 100% | 100% | 100%
Tadpole survival_3 0.1%| 0.1%]| 0.1%| 100%| 100% | 100%
Tadpole survival 4 1.1%| 1.1%| 1.1%
Winter_breeding_trig |21.6%|21.6% [21.6%|7.45%|7.45%|7.45%
Ground_water_level
Hydroperiod
Lithology 3.34%|3.34%|3.34%| 0.9%| 0.9%| 0.9%|15.1%|15.1%|15.1%
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Table 12: Sensitivity analysis for BBN for aquatic breeding frogs (assuming
correct hydroperiod for the species, 50% chance of winter breeding trigger
present and lithology 50%) at three groundwater levels.

Influencing Node Western Banjo Frog |Motorbike Frog Slender Tree
Frog
E S E
g g g
2 £ Y = £ 5 = £ 5
@® N @© N G ~N
= ) [ c 1 [ Rt 1 c
= e 2 I =) 2 I e 2
g £ » k) £ » g £ P
s | 8 o | 8 o | 8
o - |6 - |6 -
Salinity 24.1%(24.1%24.1%| 100%| 100% | 100% | 100%| 100% | 100%

Tadpole_survival 1 [24.1%24.1%|24.1%| 100% | 100%| 100% | 100% | 100% | 100%
Tadpole_survival 2 [24.1%|24.1%|24.1%| 100% | 100%| 100% | 100% | 100% | 100%
Tadpole_survival 3 [24.1%24.1%|24.1%| 100% | 100%| 100% | 100% | 100% | 100%
Tadpole_survival_4 [24.1%|24.1%(24.1%| 100% | 100%| 100% | 100% | 100% | 100%
Winter_breeding_trig | 0.6% | 0.6%| 0.6%
Ground water level
Hydroperiod

Lithology 3.6%]| 3.6% | 3.6%[15.1%[15.1%|15.1%[15.1%15.1%]15.1%

Ground_water_level
. greater than 0 16.7
Lithology zero to neg1 16.7
Spearwood 50.0 | neg1toneg2 16.7
Bassendean and transition  50.0 jm | neg2 to neg3 16.7

neg3 to negd 16.7
/ lessthannegd 16.7
Salinity I

lessthan 8ppt 962 H Hydroperiod
more than 8ppt  3.83) | | | lessthan3mnths  50.0 = I

more than 3 mnths  50.0 i

Winter_hatching_trigger Autumn_rainfall
winter rainfall present  50.0 i | autumn present  50.0 ji—
winter rainfall decline  50.0 i autumn decline  50.0

\ Soil_ monsture

low
Tadpole_survival high

no 495 *
yes 505 ; /

Crawling_frog Moaning_frog
Extreme decline  55. 3 Extreme decline  24. B
Slight decline 6.31 ; Slight decline 37. 4
Persist 379 i Persist 379

Figure 6: BBN for terrestrial-aquatic frogs.
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Table 13: Description of nodes for terrestrial-aquatic frogs BBN.

Node

Description

Possible node states

tadpole_survival

Salinity and hydroperiod
suitable for survival of
tadpoles requiring surface
water

Yes/no

Salinity Salinity of water with 8ppt | Less than 8ppt
belng the threshold for Greater than 8ppt
survival

Hydroperiod Time surface water Less than 3 months

available

More than 3 months

Amount of moisture in soil | Low/medium/high

Soil_moisture

autumn_rain Sufficient autumn rainfall Present/decline
to trigger breeding
winter_rain Sufficient winter rainfall to | Present/decline
trigger hatching
Lithology Type of lithology Spearwood or
Bassendean
GWL Depth of groundwater Six groundwater levels

relative to the surface

Table 14: Sensitivity analysis for terrestrial-aquatic frogs (assuming 50% chance
of winter hatching trigger, autumn rainfall trigger , lithology and correct
hydroperiod).

Influencing node Crawling frog Moaning frog

< £

€ IS

c S N = £ 5

© a c © N c

e ey

e L 2 b e e

8 £ 0 9 £ @

o - 3 3 - 8

o - o -
tadpole survival 56.8% 56.8% 56.8% 42.0% 42.0% 42.0%
Salinity 1.7% 1.7% 1.7% 1.2% 1.2% 1.2%
Hydroperiod 25.9% 25.9% 25.9% 18.2% 18.2% | 18.2%
Soil_moisture 8.0% 8.0% 8.0% 4.1% 4.1% 4.1%
autumn_rain 8.0% 8.0% 8.0% 4.1% 4 1% 4 1%
winter rain 1.0% 1.0% 1.0% 0.7% 0.7% 0.7%
Lithology 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
GWL

3.2 Blackwood River

The conceptual model for the Blackwood River system (Figure 7) highlighted the
importance of summer groundwater flows into the system. Besides impacting on the
water chemistry (particularly on maintaining low salinity levels) the groundwater inflows
provide sufficient water depth to maintain connectivity.
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Rainfall (winter)

Groundwater level = Surface water level

Groundwater _ Surface water
seasonality seasonality

Refuges

Salinity Temperature Dissolved Oxygen Connectivity

Fish

Figure 7: Conceptual model of the Blackwood River groundwater dependent
ecosystem.

The BBN for fish in the Blackwood River consisted of four water chemistry variables
(pH, dissolved oxygen, temperature and salinity) and a connectivity variable. All of
which are directly linked to surface water depth, which in summer is directly driven by
groundwater levels (Figure 8, Figure 9 & Table 15). Note: Figure 9 is BBN for the two
species connected to the fish health node included to show the basic structure of the
more complex Figure 8.

Changes to the nodes relating to G.occidentalis were the main influences on the fish
health node (Table 16). The sensitivity analysis highlighted that the relative importance
of various nodes altered with changes in depth to groundwater, for example, main
channel connectivity entropy reduction was 52.9% at 1.5m depth to groundwater but
reduces to 2.6% at -2.5m and back up to 17.6 at -8.5m.

For the fish health node for the BBN shown in Figure 8 a depth to groundwater of 4.5m
was the optimal level for fish health (Figure 10) (note negative value indicates
groundwater level is above surface). A decline in fish health with excess groundwater
was due to the parameterization of the surface water node, where if surface water rises
too high it is considered by the model to be water flow from surface flow upstream
rather than groundwater and therefore is saline rather than fresh.
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Table 15: Description of nodes in the Blackwood River BBN and their output

states.

Node

Description

Possible node states

groundwater_level

Groundwater level

Groundwater level at 2m
intervals

surface_water_level _main_chan

Summer surface water
flow as derived from
groundwater level
contributions

Surface water level at
0.25m intervals

Temperature_main_chan

Water temperature in the
main channel derived
from surface water level

8 possible temperature
ranges

DO _mg _per L

Disolved oxygen (mg/L)
in the main channel
derived from surface
water level

Dissolved oxygen levels
at 1mg/L intervals

pH_main_chan

pH in the main channel
derived from surface
water level

pH levels at 1unit
intervals

temp_filter

Determines if water
temperature is within the
species threshold

Inside threshold
Outside threshold
Marginal threshold

sal_threshold

Determines if salinity is
within the species
threshold

Inside threshold
Outside threshold
Marginal threshold

do _filter Determines if dissolved Inside threshold
oxygen is within the Outside threshold
species threshold Marginal threshold
connectivity_main_chan Depth of surface water High
high enough to permit Medium
movement of fish along Low

channel

ph_filter Determines if pH is Inside threshold
within the species Outside threshold
threshold Marginal threshold
fish_health Index of fish population Good

health based upon the
states of the N.balstoni
and G.occidentalis
populations.

Intermediate
Poor
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Figure 10: Probability of fish health outcomes under different groundwater
levels.

3.3 Margaret River Caves

The initial conceptual model for the Margret River Caves was complex (Figure 11). As
a number of variables could not be modelled in relation to climate change and
groundwater decline (e.g. vegetation changes), the BBN was simplified to just model
changes in cave fauna health in relation to changes in groundwater level (Figure 12 &
Table 17). Running this simple model showed that as groundwater levels fall cave
fauna health also falls (Figure 14), with changes in the root mat dependent fauna node
being the main influence on the health of the system (Figure 13).

Fire

/\ Contamination

Vegetation Rainfall

Recharge Discharge Pumping

Water guantity

Root mats

Stygofauna

Figure 11: Conceptual model of the Margaret River Caves groundwater
dependent ecosystem.
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tree_roots_wet_dry

wet 800 :
dry 200 |

Jewel_Easter_rootMatdepend jewel_easter_crack jewel_easter_rootmatindend |
persist 85.0 persist 100 j— persist 100
lost 15.0 jm | lost | lost 0
declining of | declining 0] | declining 0

N [

cave_fauna_health

good 88.7
intermediate 7.50m | !
poor 375) | ‘

Figure 12: BBN for the Jewel and Easter Caves.

Table 17: Description of nodes in the Jewel and Easter caves BBN and their

output states.

Node

Description

Possible node states

GWL

Groundwater level

Groundwater level at 2m
intervals

Tree_roots_wet_dry

Root mats on cave floor
submerged or not
submerged

Tree roots wet
Tree roots dry

Jewel_Easter_rootMatdepend | Change in root mat Persist
dependent stygofauna Lost
population Declining

Jewel_easter_crack Change in stygofauna Persist
population living in wall Lost
cracks Declining

Jewel easter _rootmatindend | Change in root mat Persist
independent stygofauna Lost
population Declining

Cave_fauna_health Estimate of cave health Good
based on the three Intermediate
stygofauna populations Poor
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Figure 13: Entropy reduction in Margaret River Caves BBN nodes. Note
Jewel_easter_crack node entropy reduction is 0% for all groundwater levels and
at 22.5m and 24.5m entropy reduciton is 0% for all nodes.
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Figure 14: Probability of cave health outcome under different groundwater levels.
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4. DISCUSSION

Bayesian Belief Networks (BBNs) were used to model potential impacts of changes in
groundwater level (due to climate change) on ground water dependent ecosystems.
Due to the range of quality and quantity of data available for the case studies BBNs
provided a flexible modelling platform which was able to model situations with large
amounts of data through to situations with little or inappropriate data which relied on
expert opinion. For all case studies Netica™ v4 (www.norsys.com) was used for the
construction of the BBNs (there is a range of BBN software, such as Genie™
(www.genie.sis.pitt.edu) and Hugin™ (www.hugin.com), any of these could have been
used).

For all the case studies examined conceptual models were developed prior to
construction of the BBNs. This process identified potential variables to be included in
the BBNs. In all cases the conceptual models were refined and reduced to a limited
number of variables.

One of the limiting factors for constructing BBNs based on expert opinion can be the
size of the conditional probability tables, if the tables are too large it can be difficult to
complete the table. In the construction of BBNs the number of parent nodes feeding
into a node should be kept to a minimum (Kragt, 2009). This is because as the number
of parent nodes feeding into a node increases the size of the conditional probability
table increases to allow for the increase number of possible combinations. For
example in a simple case where a node only has parent nodes with two alternative
states goes from four possible combinations with two parent nodes to eight possible
combinations with three parent nodes (Figure 15 & Table 18). When the conditional
probability tables need to be completed manually (such as in the case of expert
opinion) the size of the tables can become too large to be completed effectively. An
alternative to reducing the number of parent nodes is to limit the number of states in
the parent node. In the case of the Blackwood model it was not possible to reduce the
number of parent nodes feeding into the individual species health nodes, but to reduce
the size of the conditional probability table the parent nodes had a limited number of
states (inside threshold, outside threshold and marginal). Kragt (2009) suggests that
most child nodes should not have more than three parent nodes, although there are no
limitations restricting this apart from the size of the conditional probability table.

Parent node 1

Parent node 2

Parent node 1

Parent node 2

Parent node 3

State A State C State A State C State E
State B State D State B State D State F
Child node Child node
State X State X
State Y State ¥
Figure 15: Simple BBN with two parent nodes and with three parent nodes.
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Table 18: Possible combinations for a conditional probability table for a node
with two parent nodes and three parent nodes.

Two parent nodes Three parent nodes
AC ACE
AD ACF
BC ADE
BD ADF
BCE
BCF
BDE
BDF

Sensitivity analysis identifies how sensitive a conclusion is to the evidence it provides
(Jenson, 2007). Sensitivity analysis essentially highlights the nodes which most
influence the outcome node. In the Gnangara Mound models the sensitivity analysis
found that the entropy reductions for each node was relatively constant across a range
of groundwater levels. However, the Blackwood River model showed changes in the
entropy reduction for each node across the range of groundwater levels. In the case of
the Gnangara mound the response of the system (as modelled) was constant,
therefore the entropy reduction stayed relatively constant for each node with changes
in groundwater level. In the case of the Blackwood River model, the model was based
around summer flows. During summer the river is groundwater fed and therefore fresh,
whereas in winter the flows are saline due to land clearing in the upper catchment
(WaterCorp, 2005). Therefore, the salinity of the system (as modelled) is high when
groundwater level is low, as there is little freshwater entering the system. As the
groundwater level rises, salinity falls until groundwater reaches approximately 4.5m
above surface level, the model then treats this excess of water as surface water and
therefore increases salinity.

One of the strengths of BBNs is their ability to use both data and expert opinion. Due to
differences in the amount and applicability of data available for the case studies the
methods used for parameterising the BBNs varied. In the case of the Gnangara Mound
vegetation and invertebrates where there was many years data on the vegetation and
invertebrate response to changes in groundwater a purely data driven approach was
used. In the case of the Margaret River caves, the BBNs were based purely on expert
opinion. Both methods produced realistic projections of potential impacts of
groundwater changes on the groundwater dependent ecosystems.

Sensitivity analysis can also be used to eliminate nodes which may not be contributing
to the model (Marcot, 2006). For example, in the Blackwood River model the salinity
threshold node for G.occidentalis does not contribute significantly to the fish health
node and could possibly be removed from the model. In this particular case the salinity
threshold node for G.occidentalis does not contribute significantly to the model
because the threshold is not exceeded for the species within the ranges tested in the
model and other nodes, such as pH play a larger role in determining the outcome. This
can also be seen in the terrestrial and terrestrial-aquatic models, sensitivity analysis
showed that groundwater levels had no impact on the persistence of the frog species
modelled as the salinity threshold was not exceeded, therefore the salinity,
groundwater and lithology nodes are not required.

A number of good introductions to BBNs are readily available which discuss the

potential uses, construction and use, such as the Netica™ tutorial manual, Cain (2001),
Kragt (2009) and Marcot et al. (2006). There is also a number of publications
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concerning the use of expert opinion, such as Kuhnert et al. (2010) and Martin et al.
(2011). Publications such as these can provide a step by step guide to the production
and analysis of BBNs.

The case studies demonstrate the use of BBN’s in modelling the impact of altered
groundwater levels, due to climate change, on groundwater dependent ecosystems.
The case studies used a variety of information from extensive datasets (Gnangara
mound invertebrates and vegetation) through to expert opinion (Gnangara mound frogs
and Margaret River caves). The models provided a visual representation of the
systems examined and allowed the manipulation of starting conditions for the models
for the testing of different scenarios.
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