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EXECUTIVE SUMMARY 

Bayesian Belief Networks (BBNs) are an excellent tool for assessing the impact of 
climate change on groundwater dependent ecosystems. Due to its visual nature BBNs 
present a tool for communicating the environmental issues and processes and also a 
means of gathering additional information to feed into models or develop new models.   
BBNs are based on Bayesian probability which states that for any two events, A and B, 
the probability of event B occurring given that event A has happen (  can be 
determined using the formula 

where  is the probability of event A occurring given B,  is the probability of 
event B and  is the probability of event A. A BBN is composed of nodes (or 
variables) which have causal links where changes in the state of  one node may 
influence other nodes linked to it. The nature of these changes are defined by 
conditional probability tables which give the probability of an outcome given the change 
in the influencing nodes. 

BBNs have a number of advantages (Jakeman, 2009)- 
 Easily updated with new submodels and new information 
 Spatial and landscape components can be included as separate nodes 
 Easily used as a tool for communicating complex environmental problems 

among experts, managers and stakeholders 
 Can integrate models of different types 
 Can be used as a decision making tool 
 Transparent. 

Bayesian belief networks (BBNs) were developed to model the potential impacts of 
climate change on groundwater dependent ecosystems. Three systems were chosen 
as case studies (Gnangara Mound, Blackwood River and Margaret River Caves).  
Each system had varying degrees of data available, ranging from a data rich case 
study (Gnangara Mound (invertebrates and vegetation) through to a data poor case 
study (Margaret River Caves). 

The development and testing of the BBNs followed the process of- 

(1) Developing a conceptual model for each of the systems: In this stage the 
identification of important system variables and links between variables were 
established.  In this case this was done at a workshop with experts defining 
variable and causal links. 

(2) Parameterisation of the models with data: In this stage states and probabilities 
for each variable were assigned, with each variable being discreet. As the three 
systems varied in the quality and quantity of data available, ranging from a 
completely data driven approach for the data rich Gnangara Mound wetlands 
(invertebrates and vegetation) through to an expert opinion approach for the 
Margaret River Caves and Gnangara Mound frogs. For all case studies 
NeticaTM v4 (www.norsys.com) was used for the construction of the BBNs (there 
is a range of BBN software, such as GenieTM (www.genie.sis.pitt.edu) and 
HuginTM (www.hugin.com), any of these could have been used).   

(3) Evaluation of the models: Evaluation of models was undertaken in two forms, 
expert opinion and sensitivity analysis. Qualitative feedback was obtained 
through stakeholders and experts in workshops where the models were 
demonstrated. Sensitivity analysis identifies how sensitive a conclusion is to the 
evidence provided. Sensitivity analyses were conducted at different 
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groundwater levels (node set to 100% for a particular groundwater level) to 
determine major driving nodes. 

(4) Analysis of the impacts of various climate change scenarios on the systems 
using the BBN: Analysis of the impacts of various climate change scenarios 
was conducted using GIS for the Gnangara Mound and Blackwood River study 
sites, where groundwater level projections under different climate change 
scenarios were modelled using the BBNs (see SD7 Neville 2013). 

In the case of the Gnangara Mound wetland invertebrates and wetlands, which had an 
extensive data set, BBNs were constructed using only available data. In the case of the 
Blackwood River where data was less extensive a combination of data and expert 
opinion was utilised. In the case of the amphibians and Margaret River caves case 
studies, where there was not appropriate data, expert opinion was utilised. In all cases 
BBNs could be constructed and the networks were able to model the impacts on the 
systems examined due to changing groundwater levels. 

The case studies demonstrate the use of BBN’s in modelling the impact of altered 
groundwater levels, due to climate change, on groundwater dependent ecosystems.  
The case studies used a variety of information from extensive datasets (Gnangara 
mound invertebrates and vegetation) through to expert opinion (Gnangara mound frogs 
and Margaret River caves). The models provided a visual representation of the 
systems examined and allowed the manipulation of starting conditions for the models 
for the testing of different scenarios. 
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1. INTRODUCTION 

A Bayesian Belief Network (BBN) is a graphical model which can be used to establish 
the causal relationships between key factors and final outcomes (Hart, 2006).  BBN’s 
can provide effective decision support tools for problems involving uncertainty and 
probabilistic reasoning (Cain, 2001). The networks are models that represent the 
correlative and causal relationships between variables graphically and probabilistically 
(Cain, 2001).  BBNs can model a situation where causality plays a role but our 
understanding of what is going on is incomplete. 

Bayesian Belief Networks are composed of a series of nodes, which represent a 
variable in the model. Each node has a number of states with an associated probability 
distribution. Where there is a casual link between nodes the nodes are linked, the 
relationship between the nodes is defined by a conditional probability table (Mo, 2010). 
The conditional probability table represents likelihoods based on prior information or 
past experience (Anon, 2008). The outcome of the BBN is a probability for the 
hypothesis, given the data or other evidence (Mo, 2010). For example, in Figure 1 an 
example of a simple network structure can be seen where nodes A and B represent 
causal factors influencing the probability of C (Figure 1a). The values of the nodes are 
defined in terms of states (Figure 1b). A conditional probability table (Figure 1c) defines 
the causal relationship between A,B and C. This results in the probability of the three 
outcomes of C (high, medium, low) occurring. 

Bayesian Belief Networks are based on Bayesian probability theory.  Bayes rule states 
that for any two events, A and B, the probability of event B occurring given that event A 
has happen (  can be determined using the formula 

where  is the probability of event A occurring given B,  is the probability of 
event B and  is the probability of event A (Jenson, 2007). 
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Figure 1: Example of a simple Bayesian Network structure (from (Kragt, 2009)). 

Bayesian probability theory allows the modelling of uncertainty and outcomes by 
combining expert knowledge and observational evidence. The probability can be based 
on expert knowledge or data. When there is very little data the model will rely heavily 
on expert knowledge, where there is more data the model relies less on expert 
knowledge. One of the important features of BBNs is that the probabilities do not need 
to be exact to be useful. BBN’s are generally robust to imperfect knowledge and 
approximate probabilities (even educated guesses) very often give very good results. 

BBNs have a number of advantages (Jakeman, 2009)- 

 Easily updated with new submodels and new information 
 Spatial and landscape components can be included as separate nodes 
 Easily used as a tool for communicating complex environmental problems 

among experts, managers and stakeholders 
 Can integrate models of different types 
 Can be used as a decision making tool 
 Transparent. 

a)  

b)  
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Disadvantages include (Jakeman, 2009)- 

 Cannot be used as dynamic models (e.g. time step models) 
 Cannot use feedback loops 
 Variables must be discreet 
 Not optimal for statistical inference 
 Sometimes difficulty can be experienced in obtaining agreement on network 

structure. 

Bayesian Belief networks have been used in a variety of fields including medicine, 
engineering, finance and ecology. BBN’s have been used in a number of ecological 
and natural resource management contexts (Aguilera, 2011). An example of the use of 
Bayesian networks in natural resource management can be seen in Chan et al. (2012) 
where BBNs were used to assist decision-making on the environmental flow 
requirements for the Daly River in the Northern Territory.  In this case BBNs were used 
to determine the impacts of altered flows on the abundance of two fish species. Due to 
the lack of data the majority of the relationships between flow and fish abundance were 
defined by expert opinion, with data being used where available.  When the model was 
validated with field data prediction errors were between 20 and 30%. The models 
indicated that an increase in water extraction would deleteriously impact on the fish 
populations. 

Marcot et al. (2001) used BBNs to evaluate fish and wildlife population viability under a 
number of land management alternatives. The BBN modelled the ecological causal 
web of a number of key environmental variables that influenced habitat capability, 
potential population response for each species and the influence of habitat planning 
alternatives. The probabilities within the model were obtained through a mixture of 
empirical data and expert opinion. The modelling allowed identification of planning 
decisions and key environmental variables that most impacted on species viability and 
therefore helped to prioritise management activities. 

For the modelling of the impacts of climate change on groundwater dependent 
ecosystems BBN’s were considered an appropriate tool as 

 Knowledge of the interactions involved in groundwater dependent ecosystems 
is incomplete therefore some of the processes have to be modelled using 
expert opinion on top of the available data, BBNs are very robust to the use of 
imperfect knowledge 

 Much of the data on groundwater dependent ecosystems had spatial 
components, BBNs are composed of nodes which can incorporate separate 
spatial components 

 This project aims to develop a framework for use in assessing the impact of 
climate change on groundwater dependent ecosystems. Due to its visual nature 
BBNs present an excellent tool not only for communicating the environmental 
issues and processes but also a means of gathering additional information to 
feed into models or develop new models 

 BBNs are composed of nodes which allow the manipulation of starting 
conditions for the model, they therefore present a useful management tool to 
test different scenarios. 
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2.  METHODS 

2.1 Definition of model objectives systems and scales 
Bayesian belief networks (BBNs) were developed to model the potential impacts of 
climate change on groundwater dependent ecosystems. Three systems were chosen 
as case studies (Gnangara Mound, Blackwood River and Margaret River Caves).  
Each system had varying degrees of data available, ranging from a data rich case 
study (Gnangara Mound (invertebrates and vegetation) through to a data poor case 
study (Margaret River Caves). The Blackwood River system had data available for the 
species present but not necessarily available from the system. The development and 
testing of the BBNs followed the process of (1) developing a conceptual model for each 
of the systems, (2) parameterisation of the models with data, (3) evaluation of the 
models and (4) analysis of the impacts various climate change scenarios on the 
systems using the BBN. Points 1-3 are the subject of this section, analysis of impacts 
of climate change scenarios can be found in SD7 Neville 2013. 

2.2 Development of a conceptual model for each of the systems 
There are two important steps in the initial construction of the conceptual model of a 
Bayesian Belief Network (BBN). Firstly, the identification of important system variables 
and secondly, establishing links between variables (Kragt, 2009). The initial conceptual 
models were developed for all three systems being examined (Gnangara mound, 
Blackwood River and Margaret River Caves) at a workshop attended by experts on the 
three systems. The workshop involved experts identifying the key components of the 
ecosystem relating to groundwater level change. Participants in the workshops were 
asked to identify possible variables, relating to either climate change and/or 
groundwater levels which would impact on the biota of each system. A facilitator 
constructed the conceptual model during the workshop under direction of the experts 
present. The conceptual models were simple representations of the systems where 
links between relevant variables were made, with the direction of the impact noted.  
These conceptual models were used as the first step in the development of the BBNs. 

2.3 Parameterisation of the models with data 
To parameterise the model, states and probabilities for each variable needed to be 
assigned, with each variable being discreet. The conditional probability tables then 
needed to be populated. As the three systems varied in the quality and quantity of data 
available, ranging from a completely data driven approach for the data rich Gnangara 
Mound wetlands (invertebrates and vegetation) through to an expert opinion approach 
for the Margaret River Caves and Gnangara Mound frogs. The process for each of the 
cases are outlined below. For all case studies NeticaTM v4 (www.norsys.com) was used 
for the construction of the BBNs (there is a range of BBN software, such as GenieTM

(www.genie.sis.pitt.edu) and HuginTM (www.hugin.com), any of these could have been 
used). 

2.3.1 Gnangara Mound 
The Gnangara mound study area had a large data set covering a number of years for 
the response of macroinvertebrates and vegetation to changing groundwater levels.  
This dataset was used to create two BBNs (one for macroinvertebrates and one for 
vegetation) based solely on data. Development of these models is detailed in SD2 
Sommer et al. 2013. 

To develop an overall risk of wetland health based on both macroinvertebrates and 
vegetation the two models were joined, with their final outputs being used to populate a 
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wetland health index conditional probability table. The two outputs were combined into 
a wetland health conditional probability table where if both inputs were 100% low risk 
then wetland health was rated 100% low risk, if both inputs were 100% high risk then 
wetland health was rated high risk (Table 1). Risk between the two extremes was 
determined by expert opinion. 

Table 1: Conditional probability table for overall wetland health using risk to 
wetland vegetation and wetland macroinvertebrates.  Showing the percentage 
probability of low, medium and high risk to wetland health. 

Vegetation 

risk 

Marcoinvertebrate 

risk 

Low Moderate High 

Low Low 100 0 0 

Low Moderate 50 50 0 

Low High 25 75 0 

Low Very high 0 100 0 

Moderate Low 50 50 0 

Moderate Moderate 0 100 0 

Moderate High 0 75 25 

Moderate Very high 0 50 50 

High Low 25 75 0 

High Moderate 0 75 25 

High High 0 25 75 

High Very high 0 10 90 

Very high Low 0 100 0 

Very high Moderate 0 50 50 

Very high High 0 10 90 

Very high Very high 0 0 100 

In addition to the risk to wetland vegetation and macro invertebrates models, BBNs 
were constructed for the frog species present in the wetlands. Initially an attempt was 
made to construct a BBN in a similar method to the methods used for the vegetation 
and macroinvertebrates (see SD2 Sommer et al. 2013 and SD3 Mitchell, Sommer and 
Speldewinde 2013). Due to the lack of appropriate data this was not possible, therefore 
networks were developed for the amphibians using expert opinion. The use of expert 
opinion in ecological decision making has been gaining use in recent years (Kuhnert, 
2010). Martin et al. (2011) suggests five steps for the elicitation of expert knowledge: 

1. Deciding on how the information will be used, 
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2. Determining what to elicit, 
3. Designing the elicitation process, 
4. Performing the elicitation, and 
5. Translating the elicited information into quantitative statements which can be 

used in a model. 

In the case of amphibians as part of the Gnangara mound groundwater dependent 
ecosystem the information was to be used to construct a BBN for modeling the impact 
of changes in groundwater levels on amphibians. Prior to consulting an expert panel, 
the species of interest were divided into three reproductive guilds by an expert on 
amphibians of the area (aquatic-breeding species (Crinia glauerti, C. georgiana, C. 
insignifera, Limnodynastes dorsalsis, Litoria adelaidensis, Litoria moorei), species with 
terrestrial embryos  and aquatic larva (Heleiporus eyrei and Pseudophryne guentheri),
and an entirely terrestrial species that breeds underground (Myobatrachus gouldii) (see 
SD3 Mitchell, Sommer and Speldewinde 2013). For each of the guilds a conceptual 
model was derived indicating the major variables relating to the survival of these 
species. A workshop was then convened with four experts on Gnangara Mound frogs.  
Experts were first asked if they agreed with the conceptual models and given the 
opportunity to modify the models. Once agreement on model structure was reached, 
expert opinion was then used to populate the conditional probability tables of the BBN.  
This process consisted of showing the group the model and then working through each 
node in the model and allowing experts to discuss their opinions on the probability of 
outcomes before reaching a consensus. This method was chosen given that the expert 
panel was small (four people) and the models were not overly complex (five nodes in 
the case of the Turtle Frog model). Once conditional probability tables for each node 
were completed, experts were given the opportunity to alter the tables if required and 
simple scenarios were run through the model to check if model outcomes matched with 
the expected outcome predicted by the expert panel. 

The amphibian BBN’s we not included in the wetland health model so that it could 
remain an example of a completely data driven BBN. 

2.3.2 Blackwood River 
The Blackwood study site was not as data rich as the Gnangara Mound study site, 
therefore a mixture of data and expert opinion was utilized to develop the BBN for fish 
in the Blackwood River. The relationship between groundwater levels (GWL) and 
surface water levels (SWL)(summer groundwater dependent flows) was derived using 
data from Department of Water gauging station on the Blackwood River (DOW gauge 
609041). Using gauging station data and SWAMS groundwater levels the relationship 
was determined using regression (note only summer flows were used in the 
regression) (SWL=-4.4+(0.5× GWL)). 

The relationship between surface water levels and water quality was derived using 
water quality and surface water level data from DOW gauging station 609041 ( 

Table 2).  For each of the four water quality variables (temperature, salinity, dissolved 
oxygen and pH) the relationship was only determined for the summer months when 
groundwater inflow was the main contribution to surface water levels. For salinity and 
dissolved oxygen there was not a significant relationship to surface water levels 
although there was a general trend. The general trend for these two variables were 
used to determine salinity and dissolved oxygen values in the model. 
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Table 2: Relationships between variables used in the Blackwood River BBN and 
surface water level. 

Variable Relationship to surface water level(SWL) 

Temperature Temp=237.9-(21.2× SWL)  

Dissolved oxygen (mg/L) DO=-263.7+(32.4× SWL) 

pH pH=-13.0+(1.9× SWL) 

Salinity (conductivity) Sal=-58657.3+(5902.8× SWL) 

The thresholds for the environmental variables were based on data (see SD4 Beatty et
al. 2013) but were derived by expert opinion. Three possible outcomes were defined for 
the threshold, population ‘persist’, population ‘likely decline’ and population ‘extreme 
decline’. For an outcome to fall into the population ‘extreme decline‘ outcome one or 
more of the environmental thresholds had to fall outside of the known range for that 
species (the exceptions being if the salinity and dissolved oxygen, it was considered 
that salinity levels below recorded values or DO levels above recorded levels were still 
within the species thresholds). Population ‘likely decline’ was defined as three or more 
of the environmental variables being recorded in the 0-25 percentile or 75-100 
percentile. If all of the variables fell in the 25-75 percentile the outcome was defined as 
population persist (the exceptions being salinity and DO, it was considered that salinity 
below the 25th percentile or DO levels above the 75th percentile were within the species 
thresholds). 

To develop an overall index of fish health in the Blackwood study area, two indicator 
species were chosen to contribute to the index (Nannatherina balstoni and Galaxias 
occidentallis). N.balstoni only occurs over a narrow range of environmental conditions 
while G.occidentalis occurs over a wide range of environmental conditions (SD4 Beatty 
et al. 2013). A measure of fish community health node was therefore constructed in the 
model based on the characteristics of these two species (the thresholds of the 
remaining species lie between the two extremes of N.balstoni and G.occidentalis). If 
both species were found to persist in the the system was defined as 100% healthy, if 
both species were classified as ‘severe decline’ then the system was defined as 100% 
unhealthy. Various combinations in-between these two extremes were given 
probabilities by the expert panel ( 

Table 3). 
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Table 3: Conditional probability table for fish health in the Blackwood River 
based on outcomes from N.bastoni and G.occidentalis.  Showing the percentage 
probability of low, medium and high risk to fish health. 

N.balstoni G.occidentalis Good Intermediate Poor 

Severe decline Severe decline 0 0 100 

Severe decline Likely decline 0 25 75 

Severe decline Persist 0 50 50 

Likely decline Severe decline 0 25 75 

Likely decline Likely decline 0 50 50 

Likely decline Persist 25 50 25 

Persist Severe decline 0 25 75 

Persist Likely decline 0 50 50 

Persist Persist 100 0 0 

2.3.3 Margaret River Caves 
Very little data on the behaviour of these systems was available therefore the BBN was 
constructed purely on expert opinion. The basic outline of how networks are formed 
using expert opinion is described above for amphibians. In the case of the Margaret 
River Caves, two experts on the systems (Stefan Eberhard and Stacey Chilcott) 
working from the initial conceptual model derived a basic network structure based 
solely on groundwater level inputs and populated the conditional probability tables for 
each node based on their experience with the caves. 

2.4 Evaluation of models 
Evaluation of models was undertaken in two forms, expert opinion and sensitivity 
analysis. Qualitative feedback was obtained through stakeholders and experts in 
workshops where the models were demonstrated. Experts and stakeholder were asked 
to confirm if the model structure reflected their perception of how the system functioned 
and if the outputs derived from the models were what would be expected. 

Sensitivity analysis was performed on each model.  Sensitivity analysis identifies how 
sensitive a conclusion is to the evidence provided (Jenson, 2007). Sensitivity analysis 
also allows the identification of key nodes in the model, which play a significant role in 
the outcome of the model. The higher the value for a node the more that node 
influences the target, in this case outcome, node. Sensitivity analyses were conducted 
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at different groundwater levels (node set to 100% for a particular groundwater level) to 
determine major driving nodes. 

2.5 Analysis of impacts of various climate change scenarios on 
systems using the BBNs 

Analysis of the impacts of various climate change scenarios was conducted using GIS 
for the Gnangara Mound and Blackwood River study sites, where groundwater level 
projections under different climate change scenarios were modelled using the BBNs 
(see SD7 Neville 2013). 
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3. RESULTS

3.1 Gnangara Mound 
A conceptual model was derived during a workshop with a panel of experts (Figure 2).  
The initial conceptual model highlighted the importance of water quality, soil moisture, 
vegetation and soil type on this groundwater dependent ecosystem. With the exception 
of soil type, all these variables were dependent on the amount of water in the system.  
This conceptual model was refined to a number of separate BBNs (macroinvertebrates 
(see SD2 Sommer et al. 2013), vegetation (see SD2 Sommer et al. 2013), an overall 
wetland health model (Figure 1, Table 4 and Table 5). Results for the 
macroinvertebrate and vegetation models are discussed in SD2 Sommer et al. 2013.   

Figure 2: Conceptual model of the Gnangara Mound groundwater dependent 
ecosystem. 

For the macroinvertebrates, the greatest contributing variable to risk to water quality 
and macroinvertebrate risk was changes in water chemistry (Table 6).  Most nodes had 
slightly altered entropy reduction with changing groundwater depth, indicating that as 
groundwater levels the relative importance of these nodes changed.  Depending on the 
lithology, changes in the number of dry days per year and groundwater depth impacted 
on both pH and NH4 (Table 6 and see also SD2 Sommer et al. 2013). For the 
vegetation model, a similar effect was observed with the entropy reduction altering 
slightly for most variables (Table 7). The slight changes in entropy reduction with 
changes in groundwater level for both models would seem to indicate that the response 
of each node is similar at the differing groundwater levels i.e. groundwater changes 
impact on the outcome of the model but each node does not change the way it 
responds when groundwater level changes. 
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Table 4: Description of nodes in invertebrate BBN. 

Node Description  Possible Node States 
Lithology Lithology Spearwood 

Bassendean 
No of dry days/year The number of dry 

days/year 
3 intervals taken from 
MRT threshold analyses 

Groundwater depth (m) Groundwater depth (m) 3 intervals taken from 
MRT threshold analyses 

Hydro_change Filter node for No of dry 
days and Groundwater 
depth

 Acceptable 
Unacceptable 

Substrate Substrate Organic Floc 
Datomaceous 
Organic Peat 
Marl 

pH pH 4 intervals  taken from 
MRT threshold analyses 

NH4 Ammonium concentration 
in μg/L 

3 intervals taken from 
MRT threshold analyses 

Water quality change Filter node for lithology, pH 
and NH4 

Acceptable 
Unacceptable 

Water quality risk Water quality risk Low 
Moderate 
High 
Very high 

Taxonomic group Dominant 
macroinvertebrate 
taxonomic group 

6 possible states 

FFG Dominant 
macroinvertebrate 
functional feeding group 

10 possible states 

Acid tolerance Macroinvertebrate 
tolerance to acidity 

Sensitive 
Sens strong 
Tolerant 
Toler strong 

Drought resistance Macroinvertebrate drought 
resistance 

Aestivate 
Aest act 
Aest pass 
Active 
Nonres act 

Change Filter node for Taxonomic 
Group and FFG 

Acceptable 
Unacceptable 

Change_2 Filter node for Acid 
tolerance and lithology 

Acceptable 
Unacceptable 

Macroinv risk Risk that 
macroinvertebrate 
functional character will 
change

Low
Moderate 
High 
Very high 

Overall Wetland Risk Risk that ecological 
character of the wetland 
will change 

Low
Moderate 
High 
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Table 5: Description of nodes in the vegetation BBN and their output states. 

Node Description Possible Node States
Start_GWD Groundwater depth at 

commencement of 
monitoring 

4 possible ranges taken 
from MRT threshold 
analyses 

GW_decl Magnitude of groundwater 
decline in meters 

4 possible ranges taken 
from MRT threshold 
analyses 

Rate_decl Rate of groundwater 
decline in meters/year 

3 possible ranges taken 
from MRT threshold 
analyses 

Prop_hydro Change in the proportion 
of hydrophytes 

4 intervals 

Prop_meso Change in the proportion 
of mesophytes 

4 intervals 

Prop_xero Change in the proportion 
of xerophytes 

4 intervals 

Prop_gen Change in the proportion 
of generalists

4 intervals 

Perc_hydro Percentage change in 
hydrophyte abundance 

4 intervals 

Perc_meso Percentage change in 
mesophyte abundance

4 intervals 

Perc_xero Percentage change in 
xerophyte abundance 

4 intervals 

Perc_gen Percentage change in 
generalists abundance 

4 intervals 

Adverse change in 
proportion 

Adverse change in the 
proportion of hydrotypes 
(filter node) 

Unacc_change 
Accept_change 

Adverse change in 
abundance

Adverse change in the 
percentage change of 
hydrotypes (filter node) 

Unacc_change 
Accept_change  

Risk of change to 
vegetation state 

Risk of change to 
vegetation state 

Unacceptable 
Acceptable 
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Table 6: Sensitivity analysis showing percentage entropy reduction for overall 
wetland risk (macroinvertebate model) at different groundwater levels. 

Influencing node 
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3 
to

 0
 

Water quality risk 34.8% 32.3% 32.2% 
Macro invertebrate risk 23.0% 22.4% 22.0% 
Chem_change 25.8% 19.9% 19.7% 
Change_2 10.4% 9.8% 9.5% 
Change 5.5% 5.4% 5.3% 
pH 5.8% 5.7% 4.7% 
Hydro_change 4.5% 5.9% 2.8% 
Acid_Tol 4.6% 3.8% 3.3% 
NH4 3.8% 3.5% 2.7% 
Dry_days 4.5% 3.8% 0.5% 
Lithology 2.0% 1.4% 1.9% 
Substrate 1.9% 1.2% 1.7% 
FFG 1.6% 1.0% 0.8% 
Taxa_group 1.0% 0.9% 0.6% 
Drought_res 0.9% 0.7% 0.2% 
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Table 7: Sensitivity analysis showing percentage entropy reduction for overall 
risk of change to ecological character (vegetation) at different levels of 
groundwater decline. 

Influencing node

G
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 to
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G
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l 0
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 to
 0

.4
5 

G
W

_d
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l 0
.4

5 
to

 1
 

G
W

_d
ec

l 1
 to

 5

Proportion change 21.0% 20.3% 21% 20.5%
Abundance change 23.5% 19.9% 20.6% 20.6%
Start_GWD 0.1% 1.2% 0.7% 0.2%
Rate_decl 1.5% 0.5% 1.8% 0.8%
Perc_xero 2.1% 2.0% 2.0% 1.3%
Perc_hydro 8.8% 8.8% 9.4% 8.0%
Prop_hydro 7.7% 6.7% 7.9% 7.6%
Perc_meso 0.5% 0.3% 0.4% 0.2%
Prop_meso 0.2% 0.3% 0.1% 0.1%
Perc_gen 2.1% 1.6% 2.6% 2.6%
Prop_gen 2.6% 2.3% 2.6% 2.3%
Prop_xero 1.6% 2.0% 1.1% 1.8%

Three BBNs were developed for the Gnangara mound frogs, one for each reproduction 
guild ( 

Figure 4, Table 8, Figure 5, Table 10, Figure 6 and  

Table 13). Sensitivity analysis of the Turtle frog BBN ( 

Figure 4 and Table 9) shows no entropy reduction when the groundwater depth is zero 
and below 4m. At these depths the soil moisture is 100% unsuitable for the Turtle Frog 
and therefore the rainfall trigger nodes become irrelevant in the model. In between 
these two extremes soil moisture was still a highly relevant influence on the output 
node.

Sensitivity analysis of the BBN for aquatic breeding frogs (Figure 5 and Table 10) 
showed a similar pattern for all species where entropy reduction for each node was 
unchanged with changes in groundwater level. The only influence of the changes in 
groundwater level are through the salinity node. Within the groundwater levels 
modelled the salinity levels do not exceed the salinity threshold and therefore do not 
influence any of the output nodes. 

With the terrestrial-aquatic frog BBN a similar situation was found with the sensitivity 
analysis (Figure 6 and Table 14). For the terrestrial aquatic frogs the salinity threshold 
was never exceeded in the model with the groundwater levels tested therefore altering 
the groundwater level did not alter the sensitivity analysis. 
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Figure 4: BBN for the Turtle Frog. 

Table 8: Description of nodes in the Turtle frog BBN. 

Node Description Possible node states
Ground_water_level Height of water table 

relative to surface
6 groundwater levels 

Soil_moisture Amount of moisture in soil Low/medium/high 
Spring_rainfall_trigger Rainfall in spring to trigger 

courship 
Present/decline 

Autumn_rainfall_trigger Rainfall in autumn to 
trigger emergence of 
metamorphs 

Present/decline 

Table 9: Sensitivity analysis for the Turtle Frog BBN showing percentage entropy 
reduction at differing groundwater levels (assuming 50% chance of spring and 
autumn rainfall triggers). 

Node Greater than 
0m

-1m to -2m Less than -4m 

Soil_moisture  32.8%  
Max_depth   
Autumn_rainfall_trigger  0.2%  
Spring_rainfall_trigger  0.1%  
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Table 10: Description of nodes in BBN for aquatic breeding frogs. 

Node Description Possible node states

Salinity 

Salinity of water with 8ppt 
being the threshold for 
survival 

Less than 8ppt 
Greater than 8ppt 

Tadpole_survival_1 

Salinity and hydroperiod 
suitable for survival of 
tadpoles requiring surface 
water for one month 

Yes/no

Tadpole_survival_2 

Salinity and hydroperiod 
suitable for survival of 
tadpoles requiring surface 
water for two months 

Yes/no

Tadpole_survival_3 

Salinity and hydroperiod 
suitable for survival of 
tadpoles requiring surface 
water for three months 

Yes/no

Tadpole_survival_4 

Salinity and hydroperiod 
suitable for survival of 
tadpoles requiring surface 
water for four months

Yes/no

Winter_breeding_trig 
Sufficient winter rainfall to 
trigger breeding 

Present/decline

Ground_water_level 
Depth of groundwater relative 
to the surface 

Six groundwater levels 

Hydroperiod Time surface water available Five time periods 

Lithology 
Type of lithology Spearwood or 

Bassendean 

Table 11: Sensitivity analysis for BBN for aquatic breeding frogs (assuming 
correct hydroperiod for the species, 50% chance of winter breeding trigger 
present and lithology 50%) at three groundwater levels. 

Influencing Node Quacking frog Squelching froglet Rattling froglet 
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Salinity 22.1% 22.1% 22.1% 15.6% 15.6% 15.6% 100% 100% 100% 
Tadpole_survival_1 22.1% 22.1% 22.1% 15.6% 15.6% 15.6% 100% 100% 100% 
Tadpole_survival_2 0.2% 0.2% 0.2% 58.9% 58.9% 58.9% 100% 100% 100% 
Tadpole_survival_3   0.1% 0.1% 0.1% 100% 100% 100% 
Tadpole_survival_4   1.1% 1.1% 1.1% 
Winter_breeding_trig 21.6% 21.6% 21.6% 7.45% 7.45% 7.45%   
Ground_water_level     
Hydroperiod     
Lithology 3.34% 3.34% 3.34% 0.9% 0.9% 0.9% 15.1% 15.1% 15.1% 
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Table 12: Sensitivity analysis for BBN for aquatic breeding frogs (assuming 
correct hydroperiod for the species, 50% chance of winter breeding trigger 
present and lithology 50%) at three groundwater levels. 

Influencing Node Western Banjo Frog Motorbike Frog Slender Tree 
Frog 
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Salinity 24.1% 24.1% 24.1% 100% 100% 100% 100% 100% 100%
Tadpole_survival_1 24.1% 24.1% 24.1% 100% 100% 100% 100% 100% 100%
Tadpole_survival_2 24.1% 24.1% 24.1% 100% 100% 100% 100% 100% 100%
Tadpole_survival_3 24.1% 24.1% 24.1% 100% 100% 100% 100% 100% 100%
Tadpole_survival_4 24.1% 24.1% 24.1% 100% 100% 100% 100% 100% 100%
Winter_breeding_trig 0.6% 0.6% 0.6%  
Ground_water_level  
Hydroperiod  
Lithology 3.6% 3.6% 3.6% 15.1% 15.1% 15.1% 15.1% 15.1% 15.1%

Figure 6: BBN for terrestrial-aquatic frogs. 
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Table 13: Description of nodes for terrestrial-aquatic frogs BBN. 

Node Description Possible node states
tadpole_survival Salinity and hydroperiod 

suitable for survival of 
tadpoles requiring surface 
water 

Yes/no

Salinity Salinity of water with 8ppt 
being the threshold for 
survival

Less than 8ppt 

Greater than 8ppt 

Hydroperiod Time surface water 
available 

Less than 3 months 
More than 3 months 

Soil_moisture Amount of moisture in soil Low/medium/high 
autumn_rain Sufficient autumn rainfall 

to trigger breeding 
Present/decline

winter_rain Sufficient winter rainfall to 
trigger hatching 

Present/decline

Lithology Type of lithology Spearwood or 
Bassendean 

GWL Depth of groundwater 
relative to the surface 

Six groundwater levels 

Table 14: Sensitivity analysis for terrestrial-aquatic frogs (assuming 50% chance 
of winter hatching trigger, autumn rainfall trigger , lithology and correct 
hydroperiod). 

Influencing node Crawling frog Moaning frog 
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tadpole_survival 56.8% 56.8% 56.8% 42.0% 42.0% 42.0% 
Salinity 1.7% 1.7% 1.7% 1.2% 1.2% 1.2% 
Hydroperiod 25.9% 25.9% 25.9% 18.2% 18.2% 18.2% 
Soil_moisture 8.0% 8.0% 8.0% 4.1% 4.1% 4.1% 
autumn_rain 8.0% 8.0% 8.0% 4.1% 4.1% 4.1% 
winter_rain 1.0% 1.0% 1.0% 0.7% 0.7% 0.7% 
Lithology 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
GWL   

3.2 Blackwood River 
The conceptual model for the Blackwood River system (Figure 7) highlighted the 
importance of summer groundwater flows into the system. Besides impacting on the 
water chemistry (particularly on maintaining low salinity levels) the groundwater inflows 
provide sufficient water depth to maintain connectivity. 
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Figure 7: Conceptual model of the Blackwood River groundwater dependent 
ecosystem. 

The BBN for fish in the Blackwood River consisted of four water chemistry variables 
(pH, dissolved oxygen, temperature and salinity) and a connectivity variable.  All of 
which are directly linked to surface water depth, which in summer is directly driven by 
groundwater levels (Figure 8, Figure 9 & Table 15). Note: Figure 9 is BBN for the two 
species connected to the fish health node included to show the basic structure of the 
more complex Figure 8. 

Changes to the nodes relating to G.occidentalis were the main influences on the fish 
health node (Table 16). The sensitivity analysis highlighted that the relative importance 
of various nodes altered with changes in depth to groundwater, for example, main 
channel connectivity entropy reduction was 52.9% at 1.5m depth to groundwater but 
reduces to 2.6% at -2.5m and back up to 17.6 at -8.5m. 

For the fish health node for the BBN shown in Figure 8 a depth to groundwater of 4.5m 
was the optimal level for fish health (Figure 10) (note negative value indicates 
groundwater level is above surface). A decline in fish health with excess groundwater 
was due to the parameterization of the surface water node, where if surface water rises 
too high it is considered by the model to be water flow from surface flow upstream 
rather than groundwater and therefore is saline rather than fresh. 



24
   

 D
ev

el
op

m
en

t o
f B

ay
es

ia
n 

B
el

ie
f N

et
w

or
ks

Fi
gu

re
 8

: C
om

pl
et

e 
B

B
N

 fo
r B

la
ck

w
oo

d 
R

iv
er

 in
co

rp
or

at
in

g 
al

l f
is

h 
sp

ec
ie

s 
an

d 
in

de
x 

of
 fi

sh
 h

ea
lth

.  
N

ot
e 

th
e 

m
od

el
 c

on
si

st
s 

of
si

x 
ba

si
c 

w
at

er
 p

ar
am

et
er

 u
ni

ts
 re

pe
at

ed
 fo

r e
ac

h 
sp

ec
ie

s 
sp

ec
ifi

c 
th

re
sh

ol
d.

 



D
ev

el
op

m
en

t o
f B

ay
es

ia
n 

B
el

ie
f N

et
w

or
ks

   
 2

5 

Fi
gu

re
 9

: S
im

pl
ifi

ed
 v

er
si

on
 o

f t
he

 B
la

ck
w

oo
d 

R
iv

er
 B

B
N

 s
ho

w
in

g 
th

e 
im

pa
ct

 o
f c

ha
ng

e 
in

 g
ro

un
dw

at
er

 le
ve

l o
n 

fis
h 

he
al

th
. 



26    Development of Bayesian Belief Networks

Table 15: Description of nodes in the Blackwood River BBN and their output 
states.

Node Description Possible node states 
groundwater_level Groundwater level Groundwater level at 2m 

intervals 
surface_water_level_main_chan Summer surface water 

flow as derived from 
groundwater level 
contributions 

Surface water level at 
0.25m intervals 

Temperature_main_chan Water temperature in the 
main channel derived 
from surface water level 

8 possible temperature 
ranges

DO_mg_per_L Disolved oxygen (mg/L) 
in the main channel 
derived from surface 
water level 

Dissolved oxygen levels 
at 1mg/L intervals 

pH_main_chan pH in the main channel 
derived from surface 
water level 

pH levels at 1unit 
intervals 

temp_filter Determines if water 
temperature is within the 
species threshold 

Inside threshold 
Outside threshold 
Marginal threshold 

sal_threshold Determines if salinity is 
within the species 
threshold 

Inside threshold 
Outside threshold 
Marginal threshold 

do_filter Determines if dissolved 
oxygen is within the 
species threshold 

Inside threshold 
Outside threshold 
Marginal threshold 

connectivity_main_chan Depth of surface water 
high enough to permit 
movement of fish along 
channel 

High
Medium 
Low

ph_filter Determines if pH is 
within the species 
threshold 

Inside threshold 
Outside threshold 
Marginal threshold 

fish_health Index of fish population 
health based upon the 
states of the N.balstoni
and G.occidentalis
populations. 

Good 
Intermediate 
Poor 
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Figure 10: Probability of fish health outcomes under different groundwater 
levels.

3.3 Margaret River Caves 
The initial conceptual model for the Margret River Caves was complex (Figure 11). As 
a number of variables could not be modelled in relation to climate change and 
groundwater decline (e.g. vegetation changes), the BBN was simplified to just model 
changes in cave fauna health in relation to changes in groundwater level (Figure 12 & 
Table 17). Running this simple model showed that as groundwater levels fall cave 
fauna health also falls (Figure 14), with changes in the root mat dependent fauna node 
being the main influence on the health of the system (Figure 13). 

Figure 11: Conceptual model of the Margaret River Caves groundwater 
dependent ecosystem. 
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Figure 12: BBN for the Jewel and Easter Caves. 

Table 17: Description of nodes in the Jewel and Easter caves BBN and their 
output states. 

Node Description Possible node states 
GWL Groundwater level Groundwater level at 2m 

intervals 
Tree_roots_wet_dry Root mats on cave floor 

submerged or not 
submerged 

Tree roots wet 
Tree roots dry 

Jewel_Easter_rootMatdepend Change in root mat 
dependent stygofauna 
population 

Persist 
Lost
Declining 

Jewel_easter_crack Change in stygofauna 
population living in wall 
cracks 

Persist 
Lost
Declining 

Jewel_easter_rootmatindend Change in root mat 
independent stygofauna 
population

Persist 
Lost
Declining

Cave_fauna_health Estimate of cave health 
based on the three 
stygofauna populations 

Good
Intermediate 
Poor
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Figure 13: Entropy reduction in Margaret River Caves BBN nodes.  Note 
Jewel_easter_crack node entropy reduction is 0% for all groundwater levels and 
at 22.5m and 24.5m entropy reduciton is 0% for all nodes. 

Figure 14: Probability of cave health outcome under different groundwater levels. 
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4. DISCUSSION

Bayesian Belief Networks (BBNs) were used to model potential impacts of changes in 
groundwater level (due to climate change) on ground water dependent ecosystems.  
Due to the range of quality and quantity of data available for the case studies BBNs 
provided a flexible modelling platform which was able to model situations with large 
amounts of data through to situations with little or inappropriate data which relied on 
expert opinion. For all case studies NeticaTM v4 (www.norsys.com) was used for the 
construction of the BBNs (there is a range of BBN software, such as GenieTM

(www.genie.sis.pitt.edu) and HuginTM (www.hugin.com), any of these could have been 
used).

For all the case studies examined conceptual models were developed prior to 
construction of the BBNs. This process identified potential variables to be included in 
the BBNs. In all cases the conceptual models were refined and reduced to a limited 
number of variables.   

One of the limiting factors for constructing BBNs based on expert opinion can be the 
size of the conditional probability tables, if the tables are too large it can be difficult to 
complete the table. In the construction of BBNs the number of parent nodes feeding 
into a node should be kept to a minimum (Kragt, 2009). This is because as the number 
of parent nodes feeding into a node increases the size of the conditional probability 
table increases to allow for the increase number of possible combinations.  For 
example in a simple case where a node only has parent nodes with two alternative 
states goes from four possible combinations with two parent nodes to eight possible 
combinations with three parent nodes (Figure 15 & Table 18). When the conditional 
probability tables need to be completed manually (such as in the case of expert 
opinion) the size of the tables can become too large to be completed effectively. An 
alternative to reducing the number of parent nodes is to limit the number of states in 
the parent node. In the case of the Blackwood model it was not possible to reduce the 
number of parent nodes feeding into the individual species health nodes, but to reduce 
the size of the conditional probability table the parent nodes had a limited number of 
states (inside threshold, outside threshold and marginal). Kragt (2009) suggests that 
most child nodes should not have more than three parent nodes, although there are no 
limitations restricting this apart from the size of the conditional probability table. 

Figure 15: Simple BBN with two parent nodes and with three parent nodes. 
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Table 18: Possible combinations for a conditional probability table for a node 
with two parent nodes and three parent nodes. 

Two parent nodes Three parent nodes 
AC
AD
BC
BD

ACE 
ACF 
ADE 
ADF 
BCE 
BCF 
BDE 
BDF 

Sensitivity analysis identifies how sensitive a conclusion is to the evidence it provides 
(Jenson, 2007). Sensitivity analysis essentially highlights the nodes which most 
influence the outcome node. In the Gnangara Mound models the sensitivity analysis 
found that the entropy reductions for each node was relatively constant across a range 
of groundwater levels.  However, the Blackwood River model showed changes in the 
entropy reduction for each node across the range of groundwater levels. In the case of 
the Gnangara mound the response of the system (as modelled) was constant, 
therefore the entropy reduction stayed relatively constant for each node with changes 
in groundwater level.  In the case of the Blackwood River model, the model was based 
around summer flows. During summer the river is groundwater fed and therefore fresh, 
whereas in winter the flows are saline due to land clearing in the upper catchment 
(WaterCorp, 2005). Therefore, the salinity of the system (as modelled) is high when 
groundwater level is low, as there is little freshwater entering the system. As the 
groundwater level rises, salinity falls until groundwater reaches approximately 4.5m 
above surface level, the model then treats this excess of water as surface water and 
therefore increases salinity. 

One of the strengths of BBNs is their ability to use both data and expert opinion. Due to 
differences in the amount and applicability of data available for the case studies the 
methods used for parameterising the BBNs varied. In the case of the Gnangara Mound 
vegetation and invertebrates where there was many years data on the vegetation and 
invertebrate response to changes in groundwater a purely data driven approach was 
used. In the case of the Margaret River caves, the BBNs were based purely on expert 
opinion. Both methods produced realistic projections of potential impacts of 
groundwater changes on the groundwater dependent ecosystems. 

Sensitivity analysis can also be used to eliminate nodes which may not be contributing 
to the model (Marcot, 2006). For example, in the Blackwood River model the salinity 
threshold node for G.occidentalis does not contribute significantly to the fish health 
node and could possibly be removed from the model. In this particular case the salinity 
threshold node for G.occidentalis does not contribute significantly to the model 
because the threshold is not exceeded for the species within the ranges tested in the 
model and other nodes, such as pH play a larger role in determining the outcome. This 
can also be seen in the terrestrial and terrestrial-aquatic models, sensitivity analysis 
showed that groundwater levels had no impact on the persistence of the frog species 
modelled as the salinity threshold was not exceeded, therefore the salinity, 
groundwater and lithology nodes are not required. 

A number of good introductions to BBNs are readily available which discuss the 
potential uses, construction and use, such as the NeticaTM tutorial manual, Cain (2001), 
Kragt (2009) and Marcot et al. (2006). There is also a number of publications 
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concerning the use of expert opinion, such as Kuhnert et al. (2010) and Martin et al. 
(2011). Publications such as these can provide a step by step guide to the production 
and analysis of BBNs. 

The case studies demonstrate the use of BBN’s in modelling the impact of altered 
groundwater levels, due to climate change, on groundwater dependent ecosystems.  
The case studies used a variety of information from extensive datasets (Gnangara 
mound invertebrates and vegetation) through to expert opinion (Gnangara mound frogs 
and Margaret River caves). The models provided a visual representation of the 
systems examined and allowed the manipulation of starting conditions for the models 
for the testing of different scenarios.  
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